• Title/Summary/Keyword: 예측성능 개선

Search Result 977, Processing Time 0.039 seconds

고객의 선호도 평가패턴을 이용한 선호도 예측 알고리즘의 성능개선 방안

  • Lee, Seok-Jun;Kim, Seon-Ok;Lee, Hui-Chun
    • 한국경영정보학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.149-152
    • /
    • 2008
  • 본 연구는 협업 추천 시스템에 적용되는 상품에 대한 고객의 선호도 예측 알고리즘 중 메모리기반 협업필터링 알고리즘의 선호도 예측 특성에 대하여 연구하였다. 메모리기반의 협업필터링 알고리즘은 선호도 예측 대상 고객과 유사한 성향을 가질 것으로 예상되는 고객들의 선호도 평가를 기반으로 특정 상품에 대한 선호도 예측이 이루어진다. 일반적으로 시스템을 이용하는 고객들과 선호성향이 다른 고객들은 선호도 예측 성과가 낮은 것으로 알려져 있으며 이들이 추천시스템의 선호도 예측 정확도를 떨어뜨리는 원인으로 알려져 있다. 본 연구에서는 고객이 상품들에 평가한 선호도 평가의 패턴이 선호도 예측 정확도와 관련성이 높음을 보여 선호도 예측 알고리즘의 개선에 기초 자료를 제공하고자 한다. 고객의 선호도 평가 패턴은 과거 고객이 평가한 자료로부터 얻을 수 있는 사전정보로써 선호도 예측 알고리즘을 적용하기 이전에 이용할 수 있는 정보이다. 본 연구에서는 사전정보를 이용하여 고객의 선호도 예측 오차의 특성을 연구함으로써 이들의 선호도 예측 정확도를 개선시킬 수 있는 알고리즘의 보정방법에 대하여 연구한다. 알고리즘의 보정방법을 선호도 예측 이전에 고객의 선호도 평가 특성으로 판단하여 적용함으로써 사전정보를 이용한 선호도 예측 정확도를 향상시키기 위한 접근법은 기존의 이웃 구성의 접근법과 다른 방법을 취함으로써 알고리즘 개선의 새로운 방향을 제시할 것으로 기대된다.

  • PDF

Impact of Baekrokdam precipitation observation data on improving groundwater level prediction in mid-mountainous region of Jeju Island (백록담 강수량 관측자료가 제주도 중산간지역 지하수위 예측 향상에 미치는 영향)

  • Shin, Mun-Ju;Kim, Jeong-Hun;Kang, Su-Yeon;Moon, Soo-Hyoung;Hyun, Eun Hee
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.10
    • /
    • pp.673-686
    • /
    • 2024
  • Groundwater is an important water resource used for various purposes along with surface water. Jeju Island relies on groundwater for most of its water use, so predicting and managing groundwater volume is very important for sustainable use of groundwater. In this study, precipitation data from the Baekrokdam Climate Change Observatory was additionally used to accurately predict groundwater levels. We compared and analyzed the improvement in monthly groundwater level prediction performance of the ANN and LSTM models for two observation wells located in the mid-mountainous area of the Pyoseon watershed in Jeju Island. As a result, when Baekrokdam precipitation data was not used, the NSE values of the two artificial intelligence models were over 0.871, showing very high groundwater level prediction performance. The LSTM model showed relatively higher prediction performance at high and low groundwater levels than the ANN model. We found that the prediction performance decreases as the variation characteristics of the groundwater level become more complex. When Baekrokdam precipitation data was additionally used, the NSE values of the two artificial intelligence models were above 0.907, indicating improved prediction performance, and the NSE value was improved by up to 0.036. This means that when additional rainfall in the upstream area is used, the artificial intelligence model can more appropriately interpret the fluctuating characteristics of the groundwater level. In addition, the additional use of Baekrokdam precipitation data further helped improve groundwater level prediction for observation well, where groundwater level prediction is relatively difficult, and artificial intelligence models, which have relatively low groundwater level prediction performance. In particular, when Baekrokdam precipitation data was additionally used for a specific observation well, the groundwater level prediction performance of the ANN model was improved to a level comparable to that of the LSTM model. The methods and results of this study can be useful in future research using artificial intelligence models.

A Study On Predicting Stock Prices Of Hallyu Content Companies Using Two-Stage k-Means Clustering (2단계 k-평균 군집화를 활용한 한류컨텐츠 기업 주가 예측 연구)

  • Kim, Jeong-Woo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.169-179
    • /
    • 2021
  • This study shows that the two-stage k-means clustering method can improve prediction performance by predicting the stock price, To this end, this study introduces the two-stage k-means clustering algorithm and tests the prediction performance through comparison with various machine learning techniques. It selects the cluster close to the prediction target obtained from the k-means clustering, and reapplies the k-means clustering method to the cluster to search for a cluster closer to the actual value. As a result, the predicted value of this method is shown to be closer to the actual stock price than the predicted values of other machine learning techniques. Furthermore, it shows a relatively stable predicted value despite the use of a relatively small cluster. Accordingly, this method can simultaneously improve the accuracy and stability of prediction, and it can be considered as the new clustering method useful for small data. In the future, developing the two-stage k-means clustering is required for the large-scale data application.

Performance Improvement of Low Complexity LS Channel Estimation for OFDM in Fast Time Varying Channels (고속 시변 채널 OFDM을 위한 저복잡도 LS 채널 예측의 성능 개선)

  • Lim, Dong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.25-32
    • /
    • 2012
  • In this paper, we propose a method for improving the performance of low complexity LS channel estimation for OFDM in fast time varying channels. The CE-BEM channel model used for the low complexity LS channel estimation has a problem on its own and deteriorates channel estimation performance. In this paper, we first use time domain windowing in order to remove the effect of ICI caused by data symbols. Then samples are taken from the results of the LS channel estimation and the effects of the windowing are removed from them. For resolving the defect of CE-BEM, the channel responses are recovered by interpolating the resultant samples with DPSS employed as basis functions the characteristics of which is well matched to the time variation of the channel. Computer simulations show that the proposed channel estimation method gives rise to performance improvement over conventional methods especially when channel variation is very fast and confirm that not only which type of functions is selected for the basis but how many functions are used for the basis is another key factor to performance improvement.

Improvements of Intra-predicted Block (인트라 블록의 예측 정확도 향상 기술)

  • Jung, Hyesun;Kang, Je-Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.65-66
    • /
    • 2022
  • 본 논문은 딥러닝을 이용하여 예측 블록을 개선하는 화면 내 예측 기법을 제안한다. 컨볼루션 신경망 네트워크로부터 기존의 VVC의 화면 내 예측 모드를 통해 구성한 예측 블록과 주변 참조 샘플을 통과하여 보다 원본에 가까운 예측 블록을 생성한다. 따라서 예측 후 신호는 원본 블록과의 차분 신호를 줄여 비디오 부호화 성능을 향상하게 된다. 실험 결과, VTM-10.0 대비 휘도성분에 대해 약 1.16%의 BD-rate을 개선하였다.

  • PDF

Performance Improvement of data Mining by Input Data Discrimination (입력자료 판별에 의한 데이터 마이닝의 성능개선)

  • 이재식;이진천
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.293-303
    • /
    • 2000
  • 데이터 마이닝의 수행 예측 오차를 줄이기 위한 방법으로 하나의 문제를 여러 기법들을 결합하여 해결하고 있다. 본 연구에서는 새로운 결합 모델을 제시하고 이를 통해 예측 오차를 감소시킬 수 있는 가능성을 제시한다. 제시된 결합모델의 성능을 검증하기 위해서 국내 자동차보험 회사의 고객데이터를 바탕으로 고객이탈 예측문제를 다루었다. 결합모델의 예측결과를 의사결정나무, 사례기반추론 그리고 인공신경망 중 하나의 기법만을 사용하여 예측한 결과와 비교 평가하였다. 평가 결과, 결합 모델의 예측 적중률이 개별 기법의 예측 적중률보다 우수했다.

  • PDF

A Performance Study on the TPR*-Tree (TPR*-트리의 성능 분석에 관한 연구)

  • Kim, Sang-Wook;Jang, Min-Hee;Lim, Seung-Hwan
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.1 s.16
    • /
    • pp.17-25
    • /
    • 2006
  • TPR*-tree is the most widely-used index structure for effectively predicting the future positions of moving objects. The TPR*-tree, however, has the problem that both of the dead space in a bounding region and the overlap among hounding legions become larger as the prediction time in the future gets farther. This makes more nodes within the TPR*-tree accessed in query processing time, which incurs the performance degradation. In this paper, we examine the performance problem quantitatively with a series of experiments. First, we show how the performance deteriorates as a prediction time gets farther, and also show how the updates of positions of moving objects alleviates this problem. Our contribution would help provide Important clues to devise strategies improving the performance of TPR*-trees further.

  • PDF

발전소 제어계통 성능 개선 동향

  • 홍남표
    • 전기의세계
    • /
    • v.38 no.3
    • /
    • pp.43-50
    • /
    • 1989
  • 오늘날 각국의 전력산업계에서는 발전단가를 경제적으로 유리하도록 낮추고 전력수요에 탄력적으로 대처하며 기존 발전설비를 효율적으로 활용하기 위하여 발전설비의 성능개선 및 발전소 운전 수명 연장 계획을 추진하고 있다. 최신 기술에 의한 제어게통 성능 개선은 이러한 목적을 제한된 예산과 짧은 기간내에 효과적으로 수행할 수 있는 사업으로 고려되고 있다. 근본적으로 고장-내력 기능을 가지고 있는 마이크로프로세서를 이용한 분산 디지탈 제어기술은 대용량의 공정계통을 실시각 성능분석과 예측제어를 가능케 할 뿐만 아니라 다중 제어계통으로 계통의 신뢰도 및 이용율을 높이고 발전소 운전 및 제어를 용이하게 계층적으로 구성시킬 수 있는 최신 제어 기술이다. 이로써, 사례에 밝혀진 바와 같은 제어 설계 개선 및 설비 대체로 발전소 운영의 경제성, 안전성, 신뢰성 및 편이성의 개선 효과를 달성시키고 있음을 알았다. 특히, 선진국의 원자력 발전소의 제어계통 성능개선 사례는 경제성은 물론 안전성 확보에도 큰 기여를 하고 있음이 밝혀졌다. 우리나라도 전력 수요에 경제적으로 대처하고 보다 양질의 전기를 생산하며 기존설비를 효과적으로 이용하기 위하여 현재 추진중에 있는 화력발전소 제어계통 성능 개선을 단계적으로 추진하고 있는 것은 고무적인 계획임에 틀림이 없다 하겠다. 또한, 원자력 발전소의 경우에도 안정성을 제고시키고, 발전소의 이용율을 증대시키기 위하여 추진중인 신기술을 적용한 성능 개선 사업의 단계적 추진은 당연한 추세라 할 수 있다.

  • PDF

Development and Assessment of LSTM Model for Correcting Underestimation of Water Temperature in Korean Marine Heatwave Prediction System (한반도 고수온 예측 시스템의 수온 과소모의 보정을 위한 LSTM 모델 구축 및 예측성 평가)

  • NA KYOUNG IM;HYUNKEUN JIN;GYUNDO PAK;YOUNG-GYU PARK;KYEONG OK KIM;YONGHAN CHOI;YOUNG HO KIM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.101-115
    • /
    • 2024
  • The ocean heatwave is emerging as a major issue due to global warming, posing a direct threat to marine ecosystems and humanity through decreased food resources and reduced carbon absorption capacity of the oceans. Consequently, the prediction of ocean heatwaves in the vicinity of the Korean Peninsula is becoming increasingly important for marine environmental monitoring and management. In this study, an LSTM model was developed to improve the underestimated prediction of ocean heatwaves caused by the coarse vertical grid system of the Korean Peninsula Ocean Prediction System. Based on the results of ocean heatwave predictions for the Korean Peninsula conducted in 2023, as well as those generated by the LSTM model, the performance of heatwave predictions in the East Sea, Yellow Sea, and South Sea areas surrounding the Korean Peninsula was evaluated. The LSTM model developed in this study significantly improved the prediction performance of sea surface temperatures during periods of temperature increase in all three regions. However, its effectiveness in improving prediction performance during periods of temperature decrease or before temperature rise initiation was limited. This demonstrates the potential of the LSTM model to address the underestimated prediction of ocean heatwaves caused by the coarse vertical grid system during periods of enhanced stratification. It is anticipated that the utility of data-driven artificial intelligence models will expand in the future to improve the prediction performance of dynamical models or even replace them.

Performance Improvement of Prediction-Based Parallel Gate-Level Timing Simulation Using Prediction Accuracy Enhancement Strategy (예측정확도 향상 전략을 통한 예측기반 병렬 게이트수준 타이밍 시뮬레이션의 성능 개선)

  • Yang, Seiyang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.439-446
    • /
    • 2016
  • In this paper, an efficient prediction accuracy enhancement strategy is proposed for improving the performance of the prediction-based parallel event-driven gate-level timing simulation. The proposed new strategy adopts the static double prediction and the dynamic prediction for input and output values of local simulations. The double prediction utilizes another static prediction data for the secondary prediction once the first prediction fails, and the dynamic prediction tries to use the on-going simulation result accumulated dynamically during the actual parallel simulation execution as prediction data. Therefore, the communication overhead and synchronization overhead, which are the main bottleneck of parallel simulation, are maximally reduced. Throughout the proposed two prediction enhancement techniques, we have observed about 5x simulation performance improvement over the commercial parallel multi-core simulation for six test designs.