본 논문은 디지털 음성통신에서 사용되는 예측부호화(predictive coding) 방식에 관하여 기술하고 있다. 특히 전송속도가 16∼48kbit/s 대역에서 많이 사용하고 있는 adaptive differential pulse code modulation(ADPCM)과 adaptive delta modulation(ADM)에 관하여 중점적으로 토의한다. 또한 variable-rate ADPCM과 ADM에 관해서 기술하고, 이들 시스템의 noisy channel에서의 효과 및 성능개선방법, 그리고 PCM과의 transcoding에서의 문제점 등을 통의한다. ADPCM은 최근 CCITT에서의 표준화 결과로 앞으로 PCM과 함께 많이 쓰여질 전망이며, ADM은 시스템이 간단하고 또한 channel error에 강한 이유로 특수통신에 많이 쓰여질 것이다.
Proceedings of the Korean Society of Precision Engineering Conference
/
2004.05a
/
pp.252-252
/
2004
새로운 공작기계나 절삭공구의 설계 및 개선을 위하여 절삭 공정 중 발생되는 절삭력 성분을 정확히 예측하는 것이 필요하다. 절삭 과정에서 절삭력 정보의 중요성은 그동안 공작기계 분야에서 익히 강조되어 왔다. 특히 주 절삭력 정보는 공구 파손을 예측하고 마모를 감지하여 그 밖의 다른 오동작을 검출해 내는 것에 있어서 매우 중요한 것으로 잘 알려져 있다. 최근 공작기계 강성 및 성능의 향상, 고속절삭용 공구의 발전, 금형 산업의 생산성과 정밀도 향상의 요구로 머시닝센터를 중심으로 고속가공에 관한 연구가 활발히 진행되고 있다. (중략)
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.270-271
/
2019
본 논문에서는 최신 비디오 압축 표준인 HEVC 를 기반으로, 영상의 부호화 과정에서 블록 사이에 형성되는 잡음을 감소시키기 위하여 합성곱 신경망을 학습시켜 영상의 품질과 예측 성능을 향상시키는 기법을 제안한다. 실험 결과 본 제안 기법은 기존의 HEVC 대비 평균 0.06dB 의 PSNR 개선을 보였고, 원본 값과 예측 값의 오차는 0.5%만큼 감소하였다.
In recent years, big data analysis has been expanded to include automatic control through reinforcement learning as well as prediction through modeling. Research on the utilization of image data is actively carried out in various industrial fields such as chemical, manufacturing, agriculture, and bio-industry. In this paper, we applied NASNet, which is an AutoML reinforced learning algorithm, to DeepU-Net neural network that modified U-Net to improve image semantic segmentation performance. We used BRATS2015 MRI data for performance verification. Simulation results show that DeepU-Net has more performance than the U-Net neural network. In order to improve the image segmentation performance, remove dropouts that are typically applied to neural networks, when the number of kernels and filters obtained through reinforcement learning in DeepU-Net was selected as a hyperparameter of neural network. The results show that the training accuracy is 0.5% and the verification accuracy is 0.3% better than DeepU-Net. The results of this study can be applied to various fields such as MRI brain imaging diagnosis, thermal imaging camera abnormality diagnosis, Nondestructive inspection diagnosis, chemical leakage monitoring, and monitoring forest fire through CCTV.
최근 발생한 수많은 표절 논란으로 인해 많은 유사 문서 탐색 시스템이 개발되어 사용되고 있다. 많은 시스템 중 내용기반 유사문서 탐색 시스템인 DeVAC은 대용량 문서 1:1간의 비교에서 빠른 성능을 보여주지만 수천~수만 개의 문서 집합에 대해서는 적절한 성능을 보여주지 못한다. 이를 해결하기 위해 전역 사전(Global Dictionary)을 이용한 전처리 방법이 고안되어 적용되었다. 이 전처리 방법을 통해 비교해야 할 문서쌍이 줄어들고 전체 시스템의 성능을 향상시킬 수 있다는 것은 밝혀졌으나, 전처리를 위해 발생하는 추가 비용에 대한 계측이 이루어지지 않았을 뿐 아니라 문서 쌍이 얼마나 감소하는지 측정한 실험에서도 언어 처리용 실험적 데이터(말뭉치)에 대한 실험이 대부분을 차지하였기 때문에 실제 데이터에 대해 어떤 성능을 보일지 정확히 예측할 수 없었다. 본 논문에서는 전체 시스템에서 전처리를 위해 필요한 모든 추가 비용을 측정하고, 데이터를 1.5Gb, 6263개의 문서로 이루어진 실존하는 문서 집합으로 구성하여 성능 향상 정도를 측정함으로써 실제 데이터에 대한 전처리 신뢰도를 예측하였다. 실험 결과 전처리 후 찾아낸 유사한 문서 쌍을 전처리를 하지 않을 경우의 80~89.3% 정도로 유지하면서 검사 시간을 기존의 10.8%~15.4% 수준으로 대폭 감소시킬 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.246-249
/
2016
본 논문에서는 화면 내 블록 카피 (IntraBC: Intra Block Copy) 예측 기술의 압축 성능 분석과 향상된 해쉬 기법을 통한 HEVC (High Efficiency Video Coding) 스크린 콘텐츠 코딩 성능 기법을 제안한다. 현재 SCM (Screen Content Coding Test Model) 에 채택 된 화면 내 블록 카피 기술에서는 $16{\times}16$ 블록에는 1차원 탐색을 수행하고 $8{\times}8$블록에서는 해쉬기반 전역 탐색을 수행하여 해쉬가 일치하는 블록들과 RD-Cost를 수행한다. 현재의 해쉬기반 전역탐색에는 기울기 (Gradient) 위주의 해쉬 구성으로 인해 해쉬가 고르게 분포하지 않아, RD-Cost 수행횟수가 과도하게 많아지는 문제가 있다. 제안하는 방법은 전역적 화면 내 블록 카피의 해쉬 구성 방법을 개선함으로써, 기존 SCM-6.1 대비 0.46%의 BDBR 향상을 확인하였다.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.49
no.8
/
pp.33-38
/
2012
An equalization algorithm is proposed for digital video broadcasting - terrestrial version 2 (DVB-T2) systems to minimize the noise effect. It is done by averaging frequency-domain data and channel responses obtained with different signal intervals for the same orthogonal frequency division multiplexing (OFDM) symbol. Its performance is evaluated by computer simulations along with comparison of conventional algorithms.
Since data mining attempts to find unknown facts or rules by dealing with also vaguely-known data sets, it always suffers from high error rate. In order to reduce the error rate, many researchers have employed multiple models in solving a problem. In this research, we present a new type of multiple models, called DyMoS, whose unique feature is that it classifies the input data and applies the different model developed appropriately for each class of data. In order to evaluate the performance of DyMoS, we applied it to a real customer churn problem of an automobile insurance company, The result shows that the DyMoS outperformed any model which employed only one data mining technique such as artificial neural network, decision tree and case-based reasoning.
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.2
/
pp.156-163
/
2006
CF systems are widely used in recommendation due to the easy implementation and the outstanding performance. They have several problems such as the sparsity problem, the first-rater problem, and recommending explanation. Many studies are suggested to resolve these problems. While the influence of the sparsity problem lessens as the users' data are accumulated, but the first-rater problem is originated from the CF systems and there are a number of researches to overcome the disadvantages of CF systems based on the content-based methods. Also CF systems are black boxes, providing no explanation of working of the recommendation. In this paper we present a content-based prediction system based on the preference words, which exposes the reasoning behind a recommendation. Our system predicts user's rating of a new movie and we suggest a semiotic network-based method to solve the mismatching problem between the items. For experimental comparison, we used EachMovie and IMDb dataset.
In this paper, we propose a GoogleNet transfer learning and CNN-LSTM combination method to improve the time-series prediction performance for crack detection using crack data captured inside the sewer pipes. LSTM can solve the long-term dependency problem of CNN, so spatial and temporal characteristics can be considered at the same time. The predictive performance of the proposed method is excellent in all test variables as a result of comparing the RMSE(Root Mean Square Error) for time series sections using the crack data inside the sewer pipe. In addition, as a result of examining the prediction performance at the time of data generation, the proposed method was verified that it is effective in predicting crack detection by comparing with the existing CNN-only model. If the proposed method and experimental results obtained through this study are utilized, it can be applied in various fields such as the environment and humanities where time series data occurs frequently as well as crack data of concrete structures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.