• Title/Summary/Keyword: 예측선행시간

Search Result 297, Processing Time 0.036 seconds

Accuracy Analysis of Dual-Polarization Radar Rainfall Forecast by Translation Model (이류모델의 이중편파 레이더 강우예보 정확도 분석)

  • Kim, Jeong-Bae;Kim, Jin-Hoon;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.8-8
    • /
    • 2015
  • 기후변화에 따른 집중호우 및 태풍 발생의 증가로 강우레이더를 이용한 홍수예경보시스템의 필요성이 증대되고 있다. 그러나 현재 국내에서 주로 활용되고 있는 단일편파 레이더는 정확도의 한계로 인해 홍수예보 활용에 어려움을 야기해왔다. 최근에는 수직반사도, 차등반사도, 비차등반사도 등 다양한 변수 취득을 통해 강우입자의 형태를 더욱 정확하게 추정할 수 있는 이중편파 레이더의 활용이 높아지고 있다. 본 연구에서는 홍수예보 활용을 위해 이중편파 레이더 실황강우 및 예측강우의 정확도를 평가하고자 한다. 평가를 위해 비슬산 레이더 자료를 활용하였으며, 2012~2014년의 강우사상을 선정하였다. 단일 및 이중편파 레이더 강우를 각각 추정하고, 강우예측을 위해 추정된 레이더 강우를 이류모델(Translation model)에 연계하여 선행 6시간까지의 예측강우를 생산하였다. 강우의 탐지능력 평가를 위해 Hit rate를 이용하였으며, 레이더 관측반경 증가 및 강우강도의 증가에 따른 정확도 분석을 수행하였다. 강수추정 정확도 평가를 위해 상관계수와 평균제곱근 오차를 이용하였으며, 비슬산 강우레이더 100 km 반경 내에 속한 국토교통부 관할의 지상관측강우와비교하였다. 그 결과, 이중편파 레이더 실황강우가 단일편파 레이더에 비해 지상관측강우의 거동과 더욱 유사하게 나타났으며, 양적인 오차도 더 적은 것으로 확인되었다. 또한, 레이더 예측강우는 선행시간이 증가함에 따라 정확도가 감소하였으나, 선행시간 1시간까지는 활용이 가능하다고 판단된다.

  • PDF

Mutually Exclusive Resource Access in Pre-Scheduling (선행스케줄링에서 배타적 자원접근)

  • Piao, Xuefeng;Han, Shang-Chul;Kim, Hee-Heon;Park, Min-Kyu;Cho, Seong-Je;Cho, Yoo-Kun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.162-166
    • /
    • 2006
  • 선행스케줄링(pre-scheduling)은 정적인 작업(periodic job)과 동적인 작업(sporadic job)을 유연하게 처리하기 위해 제안된 스케줄링 방식이다. 이 방식은 오프라인 컴포넌트와 온라인 컴포넌트로 구성되며 오프라인 컴포넌트에서는 비주기적으로 도착하는 동적인 작업들을 고려하여 정적인 작업들을 여러 부분작업으로 분할하고, 그리고 각 부분작업들의 실행시간, 준비시간, 마감시간을 부여하고 실행순서를 결정한다. 온라인 컴포넌트에서는 이 정보들을 이용하여 정적인 작업들을 정해진 실행순서에 따라 스케줄하고, 동적인 작업이 도착하면 EDF(Earliest Deadline First) 스케줄링 방식으로 처리한다. 그러나 선행스케줄링에서는 자원공유문제를 고려하지 않고 실행시간을 부여하였으므로 여러 정적인 작업들이 하나의 자원을 공유할 경우에 배타적인 자원접근을 보장하지 못한다. 본 논문에서는 단일처리기 환경에서 여러 정적인 작업들의 자원공유를 고려하여 자원의 배타적 사용을 보장하는 선행스케줄 생성기법을 제시한다. 이 기법은 각 작업의 자원 방출시간을 예측하고 예측시간에 근거하여 각 작업의 자원사용구간이 중복되지 않도록 실행시간을 결정한다.

  • PDF

Application of LSTM and Hydrological Data for Flood Level Prediction (홍수위 예측을 위한 수문자료와 LSTM 기법 적용)

  • Kim, Hyun Il;Choi, Hee Hun;Kim, Tae Hyung;Choi, Kyu Hyun;Cho, Hyo Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.333-333
    • /
    • 2021
  • 최근 전 지구적인 기후변화 및 온난화의 영향으로 태풍 및 집중호우가 빈번하게 일어나고 있으며, 이로 인한 한천범람 등 홍수재해로 인명 및 재산 피해가 크게 증가하고 있다. 우리나라에서도 태풍 및 집중호우로 인한 호수피해는 매년 발생하고 있으며, 피해 빈도와 강도가 증가하고 있는 실정이다. 이러한 현실을 고려하였을 때에 하천 인근 주민의 생명과 재산을 보호하기 위하여 실시간으로 홍수위 예측을 수행하는 것은 매우 중요하다 할 수 있다. 국내에서 수위예측을 위하여 대표적으로 저류함수모형(Storage Function Model, SFM)을 채택하고 있지만, 유역면적이 작아 홍수 도달시간이 짧은 중소하천에서는 충분한 선행시간과 정확도를 확보하기 어려운 문제점이 있다. 이는 유역면적이 작은 중소하천에서는 유역 및 기상 특성과 관련된 여러 인자 사이의 비선형성이 대하천 유역에 비해 커지는 문제점이 있기 때문이다. 본 연구에서는 위와같은 문제를 해결할 수 있도록, 수문자료와 딥러닝 기법을 적용하여 실시간으로 홍수위를 예측할 수 있는 방법론을 제시하였다. 지난 태풍 및 집중호우로 인하여 급격한 수위상승이 있던 낙동강 지류하천에 대하여 LSTM(Long-Short Term Memory) 모형 기반 실시간 수위예측 모형을 개발하였으며, 선행시간 30~180분 별로 홍수위를 예측하고 관측 수위와 비교함으로써 모형의 적용성을 검증하였다. 선행시간 180분 기준으로 영강 유역 수위예측 결과와 실제 관측치의 평균제곱근 오차는 0.29m, 상관계수는 0.92로 나타났으며, 밀양강 유역의 경우 각각 0.30m, 0.94로 나타났다. 본 연구에서 제시된 딥러닝 기반모형에 10분 단위 실시간 수문자료가 입력된다면, 다음 관측자료가 입력되기 전 홍수예측 결과가 산출되므로 실질적인 홍수예경보체계에 유용하게 사용될 수 있을 것이라 보인다. 모형에 적용할 수 있는 더욱 다양한 수문자료와 매개변수 조정을 통하여 예측결과에 대한 신뢰성을 더욱 높일 수 있다면, 기존의 저류함수모형과 연계하여 홍수대응 능력을 향상시키는데 도움이 될 수 있다.

  • PDF

Prediction of Overflow Hazard Area in Urban Watershed by Applying Data-Driven Model (자료지향형 모형을 이용한 도시유역에서의 월류 위험지역 예측)

  • Kim, Hyun Il;Keum, Ho Jun;Lee, Jae Yeong;Kim, Beom Jin;Han, Kun Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.6-6
    • /
    • 2018
  • 최근 집중 호우로 인한 내수침수 피해가 도시화와 기후변화로 늘어나고 있다. 내수침수 피해로 인한 복구비용과 시간이 증가하고 있으며 향후에는 이보다 더 크게 늘어날 것으로 예상된다. 이러한 문제를 해결하기 위하여 충분한 선행시간을 가지고 내수 침수 구역을 제시할 수 있어야 한다. 기존의 물리적 모델은 정확하고 정교한 결과를 제공하지만, 시뮬레이션을 준비하고 마치는 데에 시간이 많이 소요된다. 그 이유로서는 강우량, 지형적 특성, 배수관망 시스템, 수문학적 매개변수 등의 다양한 데이터도 필요하기 때문이다. 이는 도시유역에 대한 내수침수의 실시간 예측이 어렵게 되었으며, 충분한 선행시간을 확보하지 못하는 원인이 되었다. 본 연구에서는 이 문제에 대한 해결책으로 결정론적 방법과 확률론적 방법을 자료지향형 모형으로 결합하여 해결책을 제시하고자 하며, 특정 강우 조건하에 도시유역에서의 내수침수에 영향을 미치는 맨홀에 대한 정보를 제공하고자 한다. 위와 같은 과정을 수행하기 위하여 입력자료 조합에 대한 비선형 분석을 실시하였으며, 그 결과로 특정 강우 조건에 대하여 각 맨홀에 대한 누적월류량을 예측할 수 있는 비선형 인공신경망을 구축할 수 있었다. 본 연구에서 제시된 방법론은 국내의 강남 배수분구에 대하여 적용이 되었으며, 내수침수 예측결과와 2차원 해석결과를 비교하고자 하였다. 본 연구에서는 위 과정을 통하여 1차원 도시유출해석을 위한 입력 자료를 준비하는 시간을 절약하고, 다양한 강우 조건과 내수침수지도 사이의 연관성을 학습하는 예측 모형을 이용하여 도시유역의 내수침수에 대한 충분한 선행시간을 확보하고자 한다. 결론적으로, 이 연구의 결과는 도시유역에 대한 비구조적 대책 수립에 도움을 줄 것으로 확인이 되며 도시 유역 내에 맨홀 위치들을 고려한 위험지구를 파악하는 데에 유용할 것으로 판단된다.

  • PDF

Real-Time Flood Forecasting Using Neuro-Fuzzy in Medium and Small Streams (Neuro-Fuzzy를 이용한 중.소하천 실시간 홍수예측)

  • Choi, Seung-Yong;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.262-262
    • /
    • 2011
  • 최근 들어 지구환경 변화에 따른 이상기후의 영향으로 태풍 및 집중호우로 인한 하천범람 등 홍수재해에 의한 인명과 재산의 피해가 급증하고 있다. 특히 한반도 지역에서는 집중호우와 태풍과 같은 이상강우로 인한 홍수피해의 발생이 매년 나타나고 있으며 홍수피해의 빈도와 강도는 증가하고 있는 실정이다. 이러한 상황에서 극심한 기상이변으로 인하여 발생되는 이상홍수의 예측에 관한 사항은 치수 이수는 물론 친수관점에서 볼 때 하천관리의 측면에서 매우 중요한 관심사로 부각되고 있다. 특히 홍수예측은 주민의 대피 및 통제, 시설물의 보호 등을 위해 충분한 선행시간을 확보할 수 있는 실시간적 관점에서의 홍수예측 및 관리가 중요하다. 기존의 수문학적 강우-유출 모형은 비선형성이 강하고 유역의 지형학적 인자와 기후학적 인자의 영향을 포함하기 때문에 정확한 예측이 어렵고 유출량을 계산하기 위한 유역추적, 저수지추적 및 하도추적의 각 추적과정에서 크고 작은 오차들이 발생하고 그것들이 누적되어 유출 모형의 해석 결과에는 많은 오차들이 포함되어 있다는 문제점이 있다. 또한 주로 유역 면적이 크고 홍수의 도달시간이 긴 대하천의 홍수예측에는 기존의 강우-유출 모형이 적당한 방법임에도 불구하고 유역면적이 작은 중소하천에 적용됨으로써 많은 불확실성을 포함하고 있으며 충분한 선행시간을 확보하지 못하는 문제점을 가지고 있다. 따라서 본 연구에서는 중소하천에서의 기존의 홍수예경보가 가지고 있는 문제점을 해결하기 위해 실시간 수위측정 자료 및 강우자료를 이용한 간단한 입력자료 만으로도 홍수예측이 가능한 뉴로-퍼지(Neuro-Fuzzy) 모형을 구축하여 충분한 선행시간을 확보함으로써 중소하천에서 의 실시간 홍수예측이 가능한 시스템을 구성하여 실시간으로 구동되는 효율적인 홍수예경보 시스템을 개발하고자 하였다. 임진강 유역을 대상으로 기존의 강우-유출 모형이 요구하는 유역의 물리적, 지형 자료 및 매개변수와 같은 광범위한 양의 자료를 배제하고, 유역의 강우 자료와 수위자료만으로 유역의 중요지점에 대한 홍수위 및 홍수량을 예측할 수 있는 뉴로-퍼지 모형을 구축하고 대상 유역에 적용하여 실측치와 비교 검증하였다.

  • PDF

Perfomance Simulation of a EFI Small Engine (전자분사식 소형엔진의 성능 해석)

  • Yeom, Kyoung-Min;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1007-1009
    • /
    • 2010
  • 실험을 통하여 엔진의 성능을 파악하고자 한다면 적지 않은 시간동안 많은 비용과 노력이 필요하다. 최근 연구에서는 이러한 단점을 해결하기 위해 CFD를 이용 선행해석을 통해 미리 그 엔진의 성능을 예측하여 실험에 들이는 시간과 비용을 줄여가고 있다. 본 연구는 실험을 통하여 소형엔진의 성능을 알아보기 이전에 선행해석을 통해 소형엔진의 성능을 예측하고자 한다. 소형엔진의 선행 해석을 위해 전자제어 연료분사 방식의 400cc급 소형엔진을 모델링하고 1D 해석프로그램인 GT-Power를 통하여 엔진의 Toque, Power 및 배기가스를 예측하였다.

  • PDF

EN 1991-1-2 Annex A를 활용한 구획화재의 화재성상 예측에 대한 연구

  • Lee, Jong-Hwa;Ji, Seung-Uk;Kim, Si-Guk
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.11a
    • /
    • pp.174-175
    • /
    • 2013
  • 본 연구에서는 구획화재의 화재성상을 온도곡선으로 나타내어 시간 경과에 따른 단계별 화재성장을 예측하고자 EN 1991-1-2 Annex A의 이론식을 프로그램화 하였다. 그리고 이를 검증하기 위하여 선행연구 조사 후 선행연구에 사용된 입력 값을 프로그램화 된 이론식에 입력하여 도출된 결과와 선행연구에서 제시하고 있는 결과와 비교 분석하였다.

  • PDF

Study of Flood Warning and Forcasting in Small to Medium scale Watershed (중소하천유역에서의 홍수예보 및 예측에 관한 연구)

  • Kim, Kyung-Tak;Kim, Joo-Hun;Choi, Yun-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1126-1130
    • /
    • 2006
  • 중랑천, 왕숙천 등과 같이 유역면적이 작은 유역에서 호우 발생에 따른 홍수예보 및 예측 업무를 수행하기 위해서는 선행시간 확보가 필수적이다. 본 연구는 중소하천 유역에서의 홍수예보 및 예측 업무를 통하여 하천 주요지점에서의 홍수예보 업무를 효과적으로 수행할 수 있도록 하는데 목적이 있다. 연구방법으로는 선행시간 확보를 위해 기상청의 수치예보자료에 대하여 정량적 강우예측 자료 활용방안을 검토하였다. 수치예보자료의 정확도 검토는 관측소별/소유역별로 구분하여 T/M자료와 수치예보자료를 통계학적 방법에 의해 검토하였다. 홍수예보 업무 활용을 위해 간단한 강우-유출 통계모형을 구성하여 홍수예측 업무를 수행하였다. 검증자료는 기왕의 수문자료 중 80mm 이상의 호우를 대상으로 실시하였고, 검증결과 활용가능성이 있음을 입증하였다. 본 연구성과를 기존의 주요지천 홍수예보업무에 활용할 수 있도록 하였다.

  • PDF

Establishment and Application of Neuro-Fuzzy Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (II) : Application and Verification (Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (II) : 실제 유역에 대한 적용 및 검증)

  • Choi, Seung-Yong;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.537-551
    • /
    • 2011
  • Based on optimal input data combination selected in the earlier study, Neuro-Fuzzy flood forecasting model linked Takagi-Sugeno fuzzy inference theory with neural network in Wangsukcheon and Gabcheon is established. The established model was applied to Wangsukcheon and Gabcheon and water levels for lead time of 0.5 hr, 1 hr, 1.5 hr, 2.0 hr, 2.5 hr, 3.0 hr are forecasted. For the verification of the model, the comparisons between forecasting floods and observation data are presented. The forecasted results have shown good agreements with observed data. Additionally to evaluate quantitatively for applicability of the model, various statistical errors such as Root Mean Square Error are calculated. As a result of the flood forecasting can be simulated successfully without large errors in all statistical error. This study can greatly contribute to the construction of a high accuracy flood information system that secure lead time in medium and small streams.

Forecasting Technique of Downstream Water Level using the Observed Water Level of Upper Stream (수계 상류 관측 수위자료를 이용한 하류 홍수위 예측기법)

  • Kim, Sang Mun;Choi, Byungwoong;Lee, Namjoo
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.345-352
    • /
    • 2020
  • Securing the lead time for evacuation is crucial to minimize flood damage. In this study, downstream water levels for heavy rainfall were predicted using measured water level observation data. Multiple regression analysis and artificial neural networks were applied to the Seom River experimental watershed to predict the water level. Water level observation data for the Seom River experimental watershed from 2002 to 2010 were used to perform the multiple regression analysis and to train the artificial neural networks. The water level was predicted using the trained model. The simulation results for the coefficients of determination of the artificial neural network level prediction ranged from 0.991 to 0.999, while those of the multiple regression analysis ranged from 0.945 to 0.990. The water level prediction model developed using an artificial neural network was better than the multiple-regression analysis model. This technique for forecasting downstream water levels is expected to contribute toward flooding warning systems that secure the lead time for streams.