• Title/Summary/Keyword: 예측선행시간

Search Result 297, Processing Time 0.034 seconds

Building an Energy Library for Model-based Power Analysis of Embedded Software (임베디드 소프트웨어의 모델기반 전력분석을 위한 에너지 라이브러리 구축)

  • Doo-Hwan Kim;Jong-Phil Kim;Jang-Eui Hong
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.469-472
    • /
    • 2008
  • 임베디드 시스템에서는 기능적 요구사항 뿐만 아니라 전력량, 응답시간, 견고성 등의 여러 가지 비기능적 요구사항들도 중요하다. 그중에서 전력량에 대한 비기능적 요구사항은 휴대형 임베디드 시스템의 운영에 있어서 핵심적인 요소이다. 임베디드 소프트웨어의 복잡도 및 크기 증가로 전력 소모량이 증가하고 있는 추세이며, 그로인해 소프트웨어 기반의 저전력 소모를 위한 임베디드 시스템 개발 기술이 활발히 연구되고 있다. 본 논문에서는 임베디드 소프트웨어 개발의 선행단계에 설계모델 기반으로 소프트웨어 전력소모량을 예측하기 위하여 요구되는 에너지 라이브러리를 구축한다.

A study on solar radiation prediction using medium-range weather forecasts (중기예보를 이용한 태양광 일사량 예측 연구)

  • Sujin Park;Hyojeoung Kim;Sahm Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.49-62
    • /
    • 2023
  • Solar energy, which is rapidly increasing in proportion, is being continuously developed and invested. As the installation of new and renewable energy policy green new deal and home solar panels increases, the supply of solar energy in Korea is gradually expanding, and research on accurate demand prediction of power generation is actively underway. In addition, the importance of solar radiation prediction was identified in that solar radiation prediction is acting as a factor that most influences power generation demand prediction. In addition, this study can confirm the biggest difference in that it attempted to predict solar radiation using medium-term forecast weather data not used in previous studies. In this paper, we combined the multi-linear regression model, KNN, random fores, and SVR model and the clustering technique, K-means, to predict solar radiation by hour, by calculating the probability density function for each cluster. Before using medium-term forecast data, mean absolute error (MAE) and root mean squared error (RMSE) were used as indicators to compare model prediction results. The data were converted into daily data according to the medium-term forecast data format from March 1, 2017 to February 28, 2022. As a result of comparing the predictive performance of the model, the method showed the best performance by predicting daily solar radiation with random forest, classifying dates with similar climate factors, and calculating the probability density function of solar radiation by cluster. In addition, when the prediction results were checked after fitting the model to the medium-term forecast data using this methodology, it was confirmed that the prediction error increased by date. This seems to be due to a prediction error in the mid-term forecast weather data. In future studies, among the weather factors that can be used in the mid-term forecast data, studies that add exogenous variables such as precipitation or apply time series clustering techniques should be conducted.

Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis (도시침수 해석을 위한 동적 인공신경망의 적용 및 비교)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.671-683
    • /
    • 2018
  • The flood damage caused by heavy rains in urban watershed is increasing, and, as evidenced by many previous studies, urban flooding usually exceeds the water capacity of drainage networks. The flood on the area which considerably urbanized and densely populated cause serious social and economic damage. To solve this problem, deterministic and probabilistic studies have been conducted for the prediction flooding in urban areas. However, it is insufficient to obtain lead times and to derive the prediction results for the flood volume in a short period of time. In this study, IDNN, TDNN and NARX were compared for real-time flood prediction based on urban runoff analysis to present the optimal real-time urban flood prediction technique. As a result of the flood prediction with rainfall event of 2010 and 2011 in Gangnam area, the Nash efficiency coefficient of the input delay artificial neural network, the time delay neural network and nonlinear autoregressive network with exogenous inputs are 0.86, 0.92, 0.99 and 0.53, 0.41, 0.98 respectively. Comparing with the result of the error analysis on the predicted result, it is revealed that the use of nonlinear autoregressive network with exogenous inputs must be appropriate for the establishment of urban flood response system in the future.

Prediction of Salinity of Nakdong River Estuary Using Deep Learning Algorithm (LSTM) for Time Series Analysis (시계열 분석 딥러닝 알고리즘을 적용한 낙동강 하굿둑 염분 예측)

  • Woo, Joung Woon;Kim, Yeon Joong;Yoon, Jong Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.128-134
    • /
    • 2022
  • Nakdong river estuary is being operated with the goal of expanding the period of seawater inflow from this year to 2022 every month and creating a brackish water area within 15 km of the upstream of the river bank. In this study, the deep learning algorithm Long Short-Term Memory (LSTM) was applied to predict the salinity of the Nakdong Bridge (about 5 km upstream of the river bank) for the purpose of rapid decision making for the target brackish water zone and prevention of salt water damage. Input data were constructed to reflect the temporal and spatial characteristics of the Nakdong River estuary, such as the amount of discharge from Changnyeong and Hamanbo, and an optimal model was constructed in consideration of the hydraulic characteristics of the Nakdong River Estuary by changing the degree according to the sequence length. For prediction accuracy, statistical analysis was performed using the coefficient of determination (R-squred) and RMSE (root mean square error). When the sequence length was 12, the R-squred 0.997 and RMSE 0.122 were the highest, and the prior prediction time showed a high degree of R-squred 0.93 or more until the 12-hour interval.

Dropout Prediction Modeling and Investigating the Feasibility of Early Detection in e-Learning Courses (일반대학에서 교양 e-러닝 강좌의 중도탈락 예측모형 개발과 조기 판별 가능성 탐색)

  • You, Ji Won
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • Since students' behaviors during e-learning are automatically stored in LMS(Learning Management System), the LMS log data convey the valuable information of students' engagement. The purpose of this study is to develop a prediction model of e-learning course dropout by utilizing LMS log data. Log data of 578 college students who registered e-learning courses in a traditional university were used for the logistic regression analysis. The results showed that attendance and study time were significant to predict dropout, and the model classified between dropouts and completers of e-learning courses with 96% accuracy. Furthermore, the feasibility of early detection of dropouts by utilizing the model were discussed.

  • PDF

Development and Evaluation of Drought Outlook method Using Climate Prediction with Bayesian method (기후예측정보와 베이지안 기법을 활용한 가뭄전망기술 개발 및 평가)

  • Son, Kyung-Hwan;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.22-22
    • /
    • 2015
  • 가뭄은 적시에 경보해야 하는 홍수와 달리 진행속도가 느리고 시간적으로 대처할 여유가 있어 진행중일지라도 미리 감지만 한다면 그 피해를 최소화할 수 있다. 이로 인해 미국 등 수문기상 선진국에서는 수문기상 장기예보자료로부터 가뭄전망정보 생산기술을 개발하였으며, 특히 가뭄전망의 정확도 향상을 위해 여러 통계적 보정기법을 적용하고 있다. 국내의 경우 기상청에서 가뭄전망을 목적으로 2011년에 수치예보모델을 이용하여 가뭄전망정보를 생산한바 있으나, 전망정보의 불확실성 문제로 가뭄예보에 활용하는데 한계가 있어 이를 개선할 수 있는 기술개발이 요구되는 실정이다. 본 연구에서는 기후예측자료를 이용하여 가뭄전망정보 생산기술을 개발하고 정확도 개선을 위해 베이지안 기법을 연계하였다. GloSea5 (Global Seasonal forecast model 5) 장기예보자료를 이용하였으며, 베이지안 기법을 통해 과거 관측자료에 대한 사전분포, 모델의 전망정보로부터 우도함수를 유도하여 최종 사후분포를 추정하였다. 베이지안 기법 적용 전 후에 따른 가뭄지수를 산정하였다. 관측자료 기반의 가뭄지수와의 비교분석을 통해 선행기간 및 계절별 가뭄예측 성능을 평가하였으며, 실제 가뭄기간 동안에 가뭄의 재현성을 지역별로 분석하였다. 장기예보자료만을 활용한 기존 가뭄전망에서는 관측 자료가 포함된 1개월 전망에서도 불확실성이 매우 높았지만 베이지안 기법 적용으로 가뭄전망의 정확도가 크게 개선되었다. 특히, 1, 2개월 전망의 시계열 가뭄지수가 관측기반의 가뭄지수의 거동과 매우 유사하게 나타났으며, 지역별로도 베이지안 기법 적용시 실제 가뭄피해 상황을 적절히 재현하는 것으로 나타났다. 국내 가뭄예보에 있어 기후예측정보를 단순활용하기 보다는 베이지안과 같은 통계적 보정기법을 이용하여 가뭄전망정보를 생산하는 것이 바람직하며, 본 연구에서는 가뭄예보업무에 활용될 수 있도록 베이지안 기법에 대한 검증 및 평가를 지속적으로 수행할 계획이다.

  • PDF

Water balance analysis for water supply at small watershed area (중소하천유역 용수공급을 위한 물수지분석)

  • Lee, Soo-Heyng;Park, Ki-Bum;Kim, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1293-1297
    • /
    • 2010
  • 최근 10년 들어 가뭄과 홍수가 빈번하게 반복되면서 용수공급에 어려움이 많은 것이 사실이다. 특히나 농촌지역, 군, 면단위 지역의 용수공급 문제는 시간이 지날수록 개선이 이루어지고 있으나 시간적으로 공간적으로 개선속도가 늦게 진행되고 있다. 새로운 취수원의 변경, 댐건설 등으로 인하여 새로운 용수공급량의 추정과 용수공급의 배분문제는 아주 중요하다고 할 수 있다. 중소하천유역에서의 물수지 분석은 해당 지역에 대한 안정된 용수를 공급하기 위해 유역내의 장래 용수수요를 산정하고 공급기준년의 자연유량을 비교하여 유역내의 물수지를 예측하고, 공급기준년의 물부족량을 공급하기 위해 필수적으로 선행되어야 하는 요소이다. 갈수시의 물수지 분석은 유역 내에서 발생하는 용수수요의 총량 및 장래수요 증가량과 불규칙한 자연유하량을 비교 검토하여 물 부족 여부를 검토하는 것으로 갈수시에도 하천의 정상적인 기능을 유지하기 위한 수자원의 확보방안을 강구하기 위해 행하는 것이다. 본 연구에서는 증가하는 용수수요와 취수원 변경에 따른 영주시 수자원의 효율적인 이용과 체계적인 용수공급 계획을 수립하기 위하여 지방 2급 하천인 서천상류(죽계천, 남원천,서천)유역 일원에 대한 용수이용현황을 조사하고 장래 용수수요를 추정하여 물수지 분석을 실시하였다.

  • PDF

Seasonal Precipitation Prediction using the Global model (전지구 모델 GME를 이용한 계절 강수 예측)

  • Kim, In-Won;Oh, Jai-Ho;Hong, Mi-Jin;Huh, Mo-Rang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.351-351
    • /
    • 2011
  • 최근 지구온난화와 더불어 이상기후가 대두됨에 따라 기상 예측이 더욱더 중요시되고 있다. 또한 이전부터 가뭄 및 홍수와 같은 기상현상으로 인한 피해 사례가 빈번하였으며, 이로 인하여 물 관리의 어려움을 겪고 있다. 한 예로 이상기후가 유난히 잦았던 2010년 여름철 경우 평년보다 발달한 북태평양고기압의 영향으로 여름철 92일 가운데 81일의 전국 평균기온이 평년보다 높게 나타났다. 또한 강우 일수가 평년에 비해 7.4일 많은 44.2일을 기록하였으며, 국지성 집중호우 사례가 빈번하였다. 또한 8월 9일 발생한 태풍 `뎬무'를 포함해서 한 달 동안 3개의 태풍이 한반도에 영향을 끼치는 이례적인 사례가 발생하였다. 따라서 본 연구는 이러한 기상재해에 따른 물 관리를 장기적으로 대비하고자 고해상도 전지구 모델 GME를 이용하여 2010년 여름철 강수 예측을 실시하였다. 강수 예측에 사용된 전지구 모델 GME는 기존의 카테시안 격자체계를 가진 모델과 달리 전구를 삼각형으로 구성된 20면체로 격자화 한 Icosahedral-hexagonal grid 격자체계로 구성되어 있어, 해상도 증가에 용이할 뿐만 아니라, HPC(High Performance Computing)환경에서 효율성이 높은 장점을 가지고 있다. 본 계절 예측을 수행함에 있어 발생하는 잡음을 최소화하고자, Time-lag 기법을 이용하여 5개의 앙상블 멤버로 구성되어있으며, 이를 비교 분석하기위해 Climatology를 이용하여 총 10개의 앙상블 멤버로 규준실험을 수행하였다. 선행 연구에 따르면 1개월 이상의 장기 적분의 경우 초기조건보다 외부 강제력이 더 중요한 역할을 한다고 연구된 바 있다. (Yang et al., 1998) 특히 계절 변동성의 경우 대기-해양간의 상호작용에 의해 지배되며, 이를 고려하여 본 연구는 해수면 온도를 경계 자료로 사용하여 계절 예측을 수행하였다. 앞서 말한 실험 계획을 바탕으로 하여 나온 결과를 통해 동아시아지역 및 한반도 도별 강수 및 온도 변수에 대해 순별 및 월별 카테고리맵 분석을 실시하여 한눈에 보기 쉽게 나타냈다. 또한 주요 도시별 강수량 및 온도의 시계열 분석을 실시하여 시간이 지남에 따라 나타나는 변동성을 확인하였다. 계절 예측 결과에서 온도의 경우 평년보다 높게 나타났으며, 이는 실제 온도 예측과도 유사한 패턴을 가졌다, 강수의 경우 7월부터 8월 중순까지 평년보다 다소 적게 모의되었으며, 8월 하순경 회복하는 것으로 예측하였다. 따라서 본 계절 강수 예측은 다소 역학 모델이 가지는 한계를 가지고 있으나, 실제와 비교하여 어느 정도의 경향성이나 패턴에 있어 유사성을 보임을 확인하였으며, 이를 장기적 차원의 물관리를 함에 있어 참고 및 활용 가능할 것으로 예상한다.

  • PDF

Performance Analysis on Link Quality of Handover Mechanism based on the Terminal Mobility in Wired and Wireless Integrated Networks (유무선 복합망에서 이동 단말 기반 핸드오버의 링크 품질에 관한 성능 분석)

  • Park, Nam-Hun;Gwon, O-Jun;Kim, Yeong-Seon;Gam, Sang-Ha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8S
    • /
    • pp.2608-2619
    • /
    • 2000
  • This paper proposes the Handover Scheme for the mobile and describes the result of the performance analysis. In the conventional scheme of handover request, the withdrawal of terminal may occur because handover request is performed based on fixed signal level without considering network load and terminal mobility. The proposed scheme offers the minimization of withdrawal and handover blocking probability by means of the handover request of terminal based on the network load and terminal mobility. Conventional handover scheme has the sequential procedure that network performs resource check and path rerouting on the handover by MT(Mobile Terminal). Proposed handover scheme pre-processes the resource check before the handover request by predicting the handover request timo so that handover latency can be reduced. Moreover, path optimization is executed after the completion of handover in order to reduce handover latency. The rdduction of handover latency prevents the dropping of service by minimizing backward handover blocking. In summary, we propose the prediction of handover request time and decision method based on terminal, validating the performance of proposed scheme considering various cases of simulation.

  • PDF

Revision of the Input Parameters for the Prediction Models of Smoke Detectors Based on the FDS (FDS 기반의 연기감지기 예측모델을 위한 입력인자 재검토)

  • Jang, Hyo-Yeon;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.44-51
    • /
    • 2017
  • Accurate predictions of the activation time for smoke detectors using a fire simulation is are required to ensure the reliability of the RSET (Required Safe Egress Time) calculation in the process of PBD (Performance-Based Design). The objective of this study was to enhance the accuracy of input parameters for the numerical models of smoke detector based on the FDS. To this end, a Fire Detector Evaluator (FDE) developed in previous studies was improved. The uniformities of flow and smoke inside the FDE were improved and accurate measurements of the obscuration per meter (OPM) related to detector operation were also performed through a decrease in the forward scattering of smoke particles. The input parameters using the improved FDE showed a significant difference from the previous FDE quantitatively. In particular, a larger difference was found in a photoelectric detector compared to an ionization detector. Considering that the operating conditions of smoke detectors are affected by the detector type, combustibles, smoke particulars, and color, the database (DB) on the input parameters for various detectors and combustibles should be built to improve the reliability of PBD in future studies.