• Title/Summary/Keyword: 예측도

Search Result 42,495, Processing Time 0.055 seconds

Prediction on the Economic Activity Level of the Elderly in South Korea - Focusing on Machine Learning Method Combined with Forecast Combination - (우리나라 고령층의 경제활동 수준 예측 - 머신러닝 기법과 연계한 예측조합법을 중심으로 -)

  • Kim, Jeong-Woo
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.5
    • /
    • pp.237-247
    • /
    • 2022
  • This study predicts the economic activity level of the elderly in Korea using various machine learning methods. While the previous studies mainly focused on testing the relationship between the economic activity level and the life satisfaction or the social security system, this study aims at the accurate prediction on the economic activity level of the elderly using various machine learning methods and the forecast combination. Dependent variables such as the activity rate, employment rate, etc and independent variables such as the income, average wage, etc compose the dataset in this study. Five different machine learning methods and two forecast combinations are applied to the given dataset. The prediction performances of the machine learning method and the forecast combination varied across the dependent variables and prediction intervals, but it was found that the forecast combination was relatively superior to other methods in terms of the stability of prediction. This study has significance in that it accurately predicted the economic activity level of the elderly and achieved the stability of the prediction, raising practicality from a policy perspective.

Branch Prediction Latency Hiding Scheme using Branch Pre-Prediction and Modified BTB (분기 선예측과 개선된 BTB 구조를 사용한 분기 예측 지연시간 은폐 기법)

  • Kim, Ju-Hwan;Kwak, Jong-Wook;Jhon, Chu-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.1-10
    • /
    • 2009
  • Precise branch predictor has a profound impact on system performance in modern processor architectures. Recent works show that prediction latency as well as prediction accuracy has a critical impact on overall system performance as well. However, prediction latency tends to be overlooked. In this paper, we propose Branch Pre-Prediction policy to tolerate branch prediction latency. The proposed solution allows that branch predictor can proceed its prediction without any information from the fetch engine, separating the prediction engine from fetch stage. In addition, we propose newly modified BTE structure to support our solution. The simulation result shows that proposed solution can hide most prediction latency with still providing the same level of prediction accuracy. Furthermore, the proposed solution shows even better performance than the ideal case, that is the predictor which always takes a single cycle prediction latency. In our experiments, IPC improvement is up to 11.92% and 5.15% in average, compared to conventional predictor system.

Internet Congestion Control Using Queue Prediction (큐 예측을 통한 인터넷 혼잡 제어)

  • 권성기;장봉석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10c
    • /
    • pp.301-303
    • /
    • 2003
  • 본 논문에서는 인터넷 혼잡제어를 위한 새로운 방법을 제안한다. 라우터 큐에 예측제어함수를 적용하여 미래의 혼잡상황을 예측하고 소스에게 미리 피드백을 수행하여 혼잡제어를 한다. 예측제어함수는 실제 큐와 예측된 큐의 오차를 계산하여 주기적으로 예측함수를 갱신하는 NLMS 방식의 예측제어함수를 적용한다. 피드백 정보의 전송지연으로 인한 혼잡상황 악화가 발생하기 전에 혼잡상황에 대응할 수 있으므로 라우터 버퍼 사용효율의 최적함을 유지할 수 있으며 버퍼 오퍼플로우로 발생하는 패킷의 손실을 최소화 할 수 있다. 혼잡상황을 야기하도록 과도한 트래픽을 생성하여 라우터에서 예측함수를 적용하는 경우와 단지 혼잡알림제어를 수행하는 경우를 비교하여 시뮬레이션을 수행하였다. 예측함수를 적용하는 경우는 시스템 성능효율을 증가시키며 라우터 버퍼 크기를 최적하게 사용할 뿐만 아니라 오퍼플로우가 발생하지 않았으나 예측함수를 적용하지 않고 혼잡알림제어를 수행하는 경우는 과도한 큐 크기와 오버플로우가 발생하였음을 시뮬레이션을 통해서 보인다.

  • PDF

Efficient Near Lossless Intra Coding using Sub-block Partitioning (서브 블록 분할을 이용한 효율적인 근접 무손실 화면내 부호화)

  • Choi, Jung-Ah;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.337-340
    • /
    • 2010
  • 본 논문은 H.264/AVC를 이용한 근접 무손실 화면내 부호화에서 기존의 라인 기반 예측 방법에서 발생할 수 있는 오류 전파 문제를 해결하기 위한 방법을 제안한다. H.264/AVC의 화면내 예측 부호화는 주변 블록의 복원 화소들을 현재 부호화하려는 블록의 예측값으로 사용하여 공간적 상관성을 제거하고 부호화 효율을 향상시킨다. 기존의 라인 기반 예측 방법에서는 일반적으로 화소 간 거리가 멀어질수록 화소 간 상관성이 떨어지므로 라인 단위로 예측을 수행하여 예측의 정확도를 높였다. 하지만, 이 경우 오류 전파 문제에 취약하다는 단점이 있다. 본 논문에서는 화면내 $16{\times}16$ 수직 및 수평 예측 모드에 대해 매크로블록을 라인 단위로 예측하면서 정해진 서브 블록마다 참조 화소를 업데이트하는 방법을 제안한다. 따라서, 라인 기반 예측 방법의 예측 정확도는 유지하면서 오류 전파 문제를 예방할 수 있다. 실험을 통해, 제안하는 방법이 High 프로파일에서 H.264/AVC 표준 소프트웨어 JM 12.2에 비해 평균 약 5.8%의 비트율을 감소시킬 수 있음을 보였다.

  • PDF

A Study on the Forecasting Module of Artificial Intelligence (인공지능 수요예측 모듈에 대한 연구)

  • 최정원;구찬모;장경원;왕지남
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.661-663
    • /
    • 2000
  • 본 논문은 수요 예측함에 있어서 여러 가지 수요 예측 방법을 통해 매 시기 마다 적절한 수요예측 기법을 사용하여 좀더 정확한 수요예측 결과를 추정하기 위한 방법을 연구하며 특히, 수요 예측하기 어려운 제품에 대해 여러 인자를 고려하여 좀더 나은 예측치를 구하기 위한 방법을 연구하고 있다. 마지막으로 각 ERP나 SCM, MRP application에 연계하여 필요한 자료를 되게 얻고 이를 다시 보내 줄 수 있는 일반적인 연계 방법을 연구하고 있다. 본 논문에서는 데이터 베이스 연계부분에서는 ODBC 를 사용하였으며, 예측 기법은 Moving Average 기법과 Exponential Smoothing 기법, 그리고 Neural Networks 중 BP 를 이용하여 구현하였다. 앞으로 좀 더 많은 예측 기법을 적용하여 향상된 수요 예측을 위한 모듈을 연구 및 구현하려 한다.

  • PDF

Load forecasting for the holidays on Saturday or Monday using a fuzzy linear regression and a rotative coefficient algorithm (퍼지 선형회귀분석법과 상대계수법을 이용한 토요일과 월요일의 특수일 예측)

  • Ku, Bon-Suk;Baek, Young-Sik;Song, Kyung-Bin;Hong, Dug-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.52-54
    • /
    • 2001
  • 전력 수요 예측은 전력 수급 안정과 양질의 전력을 공급하기 위한 필수 기법이며 경쟁적인 전력 시장에서 전력요금과 밀접한 관련이 있다. 그러므로, 경쟁적인 전력시장 구조하의 시장 참여자에게 있어서 전력수요 예측은 매우 관심 있는 사항이다. 최근의 전력 수요 예측 기법으로 예측한 오차율을 살펴보면 특수일의 전력 수요 예측의 정확도가 평일 예측에 비해 낮으며 특히, 토요일 또는 월요일에 특수일이 오는 경우 예측의 정확도가 낮아지는 경향이 있다. 따라서, 찬 논문은 퍼지 선형회귀 분석법과 상대계수법을 병행하여 예측함으로써 특수일 수요 예측의 정확도를 개선하는 방법을 제시한다.

  • PDF

A Performance Evaluation of Value Predictors in a Superscalar Processor (슈퍼스칼라 프로세서에서 값 예측기의 성능평가)

  • 전병찬;박희룡;이상정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.10-12
    • /
    • 2001
  • 와이드 이슈 슈퍼스칼라 프로세서에서 값 예측기는 한 명령어의 결과를 미리 예측하여 명령들 간의 데이터 종속관계를 극복하고 실행함으로써 명령어 수준 병렬성(Instruction Level Parallesim ILP)을 향상시키는 기법이다. 본 논문에서는 명령어 수준 병렬성을 이용하여 성능을 향상시키기 위하여 데이터 값을 미리 예측하여 병렬로 이슈하고 수행하는 값 예측기의 성능을 비교분석 한다. 먼저 값 예측기 종류별로 성능을 측정한다 그리고 테이블의 갱신시점, 트레이스 캐시 유무 및 명령윈도우 크기에 따른 값 예측기의 성능영향을 평가분석 한다. 성능분석 결과 최근 값 예측기가 간소한 하드웨어 구성에도 불구하고 우수한 성능을 보였다. 그리고 예측테이블 갱신시점과 트레이스캐시의 사용이 값 예측기의 성능향상에 영향을 주었다.

  • PDF

Load Forecasting for Holidays using Fuzzy Least-Squares Linear Regression Algorithm (퍼지 최소자승 선형회귀분석 알고리즘을 이용한 특수일 전력수요예측)

  • Ku, Bon-Suk;Baek, Young-Sik;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.51-53
    • /
    • 2001
  • 전력 수요 예측은 전력 수급 안정과 양질의 전력을 공급하기 위한 필수 기법이며 경쟁적인 전력시장에서 전력요금과 밀접한 관련이 있다. 그러므로, 경쟁적인 전력시장 구조하의 시장 참여자에게 있어서 전력 수요 예측은 매우 관심 있는 사항이다. 최근의 전력 수요 예측 기법으로 예측한 오차율을 살펴보면 평일과는 다르게 특수일의 전력 수요예측은 평균 5%를 상회하는 수준으로 예측의 정확도가 평일 예측에 비해 크게 낮은데 이유는 특수일이 평일에 비하여 부하의 크기가 다소 낮게 나타나고 특수일 마다 계절적인 차이가 있으며 각각의 특수일 마다 고유한 부하의 특성이 있으므로 과거 데이터를 이용할 때 동일 특수일을 이용하게 되며 따라서 평일과는 다르게 일년 단위로 과거 데이터 값들이 취득되므로 오차율이 커진다. 따라서 데이터들을 퍼지화하여 선형계획법을 수행하여 평균 $2{\sim}3%$ 정도의 우수한 결과를 도출한 바 있다. 본 논문에서는 퍼지 선형회귀분석법을 이용한 예측 기법에 최소자승법을 도입하여 특수일 전력 수요예측의 정확도를 개선하였다.

  • PDF

The Study on Cooling Load Forecast of Ice-Storage System using Neural Network (신경망을 이용한 빙축열 시스템의 냉방부하예측에 관한 연구)

  • Koh Taek-Beom
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2006.05a
    • /
    • pp.115-118
    • /
    • 2006
  • 빙축열 시스템과 같은 열교환 시스템을 이용하여 심야의 전력 경부하 시 주간에 이용할 냉방부하를 축열하였다가 주간에 공급함으로써 전력의 평준화와 전력 설비의 효율적 운용을 기할 수 있어 전력의 안정적인 수급과 에너지의 효율을 극대화할 수 있다. 하지만 빙축열 시스템의 제어 운전을 전적으로 운전자의 경험에 의존하는 경우에 충분한 냉방 부하를 공급하기 위한 잉여축열에너지가 비경제적으로 많아져서 빙축열 시스템의 경제성이 저하되고 사용 효과가 낮아지는 문제점이 많이 발생되고 있다. 경제적인 활용 효과를 고려하여 빙축열 시스템을 효율적으로 운용하기 위해서는 냉방부하량이 기후 특성에 의해 결정되므로 기후를 정확하게 예측하고 이를 토대로 다음날의 시간별 냉방부하를 예측하여 적정한 축열량을 결정하여야 하는 어려움이 따른다. 이러한 문제를 해결하기 위해 본 연구에서는 신경망을 이용하여 기상 데이터를 토대로 다음날의 온도와 습도를 예측하고 예측된 온도와 습도 및 냉방부하 실적 자료를 기반으로 신경망을 이용하여 시간별 냉방부하를 예측하는 알고리즘을 제시하였다. 제안된 냉방 부하예측 알고리즘에 의해 구축된 한국전력공사 속초생활연수원의 부하예측모델을 이용하여 온도, 습도, 냉방부하를 예측한 결과 기존 방법에 의한 것보다 우수한 예측 성능을 보였다.

  • PDF