• Title/Summary/Keyword: 예측도

Search Result 42,495, Processing Time 0.058 seconds

Fast Intra Mode Decision Method in HEVC (고속 HEVC 부호화기 설계를 위한 화면내 예측 모드 결정 방법)

  • Lee, Sunyoung;Noh, Gyeonggi;Kim, Hyeongduck;Ryoo, Sungul;Shin, Jae-Seob
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.560-563
    • /
    • 2015
  • 동영상 부호화 표준, HEVC(High Efficiency Video Coding)는 부호화 성능을 극대화하기 위해 총 35 개의 화면내 예측 모드를 사용한다. 화면내 예측 모드는 각도를 가진 모드와 각도가 없는 모드로 구성된다. 부호화 성능을 높이기 위해 사용한 다수의 화면내 예측 모드 방법은 HEVC 부호화기의 복잡도를 증대 시키는데 큰 역할을 하게 된다. 본 논문은 총 35 개의 화면내 예측 모드 중 현재 블록의 주변 블록 정보로부터 얻을 수 있는 예측 모드들 및 각도를 대표하는 예측 모드들을 선별적으로 추려서 후보 예측 모드를 결정하고, 평가 과정을 거쳐 해당 후보 모드 중에서 최종 화면내 예측 모드를 결정한다. 본 제안 방법은 35 개의 전체 화면내 예측 모드 중 소수의 후보 모드만을 평가함으로써 HEVC 표준의 화면내 예측 및 부호화 과정의 복잡도를 감소시키려 한다. 제안 방법을 다양한 테스트 시퀀스에 적용한 결과, 35 개 화면내 예측 모드를 전부 사용한 경우와 비교하여 1.1%의 BD-rates 이 증가하면서 18.7%의 부호화기 복잡도를 감소시킬 수 있었다.

  • PDF

Improvement of streamflow forecast using a Bayesian inference approach (베이지안 기법을 통한 유량예측 정확도 개선)

  • Seo, Seung Beom;Kim, Young-Oh;Kang, Shin-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.303-303
    • /
    • 2018
  • 안정적인 수자원 운용을 위해서는 정확한 유량예측 기술이 필요하다. 본 연구에서는 유량예측 정확도의 개선을 위해 베이지안 추론(Bayesian inference) 기법과 앙상블 유량 예측(Ensemble Streamflow Prediction, ESP) 기법의 결합을 통한 새로운 유량예측 기법(Bayesian ESP)을 제안하였다. ESP를 통한 유량 예보 앙상블은 베이지안 추론의 사전정보로 활용되며, 관측 유량과 ESP 전망 결과의 선형관계를 통해 우도함수가 추정된다. 우도함수는 관측 유량이 존재하는 과거 기간에 대한 ESP를 수행한 후 예보 시점의 관측 유량(concurrent observed flow)과 선행 관측 유량(lagged observed flow)과의 다중선형회귀 모형을 통해 추정된다. 사전정보와 우도함수는 정규분포로 가정되며, 따라서 최종 유량예측인 사후정보 역시 정규분포함수로 산정되게 된다. Bayesian ESP은 ESP에서 발생하는 강우-유출모형 오차의 개선을 통해 수문예측의 정확도를 개선하게 되며 정규분포함수로 최종 결과가 산정되므로 확률예보 형태의 수문 전망도 가능하다. 본 기법을 전국 35개 댐 유역에 시범적용을 한 결과, 모든 유역에서 기존 ESP 기법 대비 수문예측 정확도의 개선을 가져왔으며, 우도함수 추정에 있어 선행 유량의 포함 여부가 수문 예측 정확도의 추가적인 개선을 가져왔다. 본 기법은 주간 예보부터 계절 예보까지 탄력적으로 구축이 가능하며 적용 결과 리드 타임이 길어질수록 예측 능력이 감소되었지만 전체 구간에 있어서 Bayesian ESP 기법이 가장 우수한 예측 정확도를 보여주었다.

  • PDF

Application and Accuracy Improvement of Numerical Weather Prediction Data for Rainfall and Flood Forecasting (강우 및 홍수 예측을 위한 수치예보자료의 적용 및 정확도 개선)

  • Moon, Hyejin;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.10-10
    • /
    • 2018
  • 기후변화로 인한 집중호우의 빈도 및 강도가 증가하여 치수 구조물의 설계 홍수 빈도를 초과하는 피해가 발생하고 있다. 본 연구에서는 이러한 침수 피해를 저감하기 위해 수치예보자료를 활용한 홍수 예 경보시스템의 적용성을 비교 평가하였다. 수치예보자료는 국내 기상청에서 제공하는 국지예보모델(LDAPS)과 일본 기상청의 중규모모델(Meso-scale Model ; MSM)을 이용하였으며, 남강댐 유역 내의 산청 유역에 대해 태풍 및 정체 전선 등 3 개의 강우사상을 선정하였다. 강우유출 해석에는 분포형 수문 모형인 KWMSS(Kinematic Wave Method for Subsurface and Surface)를 이용하였다. 그 결과, LDAPS와 MSM 모두 강우발생 유무를 잘 재현하였다. 특히, 광역적 강우인 태풍사상에 대해 강우 예측에서 비교적 높은 정확도를 나타내었다. 강우 예측의 정확도 향상을 위해 강우장의 공간 변위를 고려하여 앙상블 강우 분포를 적용한 결과, 강우 예측의 정확도가 향상되는 것으로 나타났다. 홍수 예측의 경우 두 수치예보자료 모두 유출 패턴을 잘 재현하였다. 앙상블 홍수 예측 결과, 단일 강우 자료를 통한 홍수 예측에서의 예측 불확실성을 개선하는 것으로 나타났다. 3개의 강우 사상에 대해 MSM의 예측 결과가 LDAPS의 예측 결과보다 비교적 높은 상관관계를 나타내었다. 본 연구를 통해 강우 및 홍수 예측에 수치예보자료의 적용 가능성이 있다고 판단되며, 홍수 예 경보의 기초자료로 활용성이 있다고 판단된다.

  • PDF

Development of hybrid precipitation nowcasting model by using conditional GAN-based model and WRF (GAN 및 물리과정 기반 모델 결합을 통한 Hybrid 강우예측모델 개발)

  • Suyeon Choi;Yeonjoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.100-100
    • /
    • 2023
  • 단기 강우 예측에는 주로 물리과정 기반 수치예보모델(NWPs, Numerical Prediction Models) 과 레이더 기반 확률론적 방법이 사용되어 왔으며, 최근에는 머신러닝을 이용한 레이더 기반 강우예측 모델이 단기 강우 예측에 뛰어난 성능을 보이는 것을 확인하여 관련 연구가 활발히 진행되고 있다. 하지만 머신러닝 기반 모델은 예측 선행시간 증가 시 성능이 크게 저하되며, 또한 대기의 물리적 과정을 고려하지 않는 Black-box 모델이라는 한계점이 존재한다. 본 연구에서는 이러한 한계를 극복하기 위해 머신러닝 기반 blending 기법을 통해 물리과정 기반 수치예보모델인 Weather Research and Forecasting (WRF)와 최신 머신러닝 기법 (cGAN, conditional Generative Adversarial Network) 기반 모델을 결합한 Hybrid 강우예측모델을 개발하고자 하였다. cGAN 기반 모델 개발을 위해 1시간 단위 1km 공간해상도의 레이더 반사도, WRF 모델로부터 산출된 기상 자료(온도, 풍속 등), 유역관련 정보(DEM, 토지피복 등)를 입력 자료로 사용하여 모델을 학습하였으며, 모델을 통해 물리 정보 및 머신러닝 기반 강우 예측을 생성하였다. 이렇게 생성된cGAN 기반 모델 결과와 WRF 예측 결과를 결합하는 머신러닝 기반 blending 기법을 통해Hybrid 강우예측 결과를 최종적으로 도출하였다. 본 연구에서는 Hybrid 강우예측 모델의 성능을 평가하기 위해 수도권 및 안동댐 유역에서 발생한 호우 사례를 기반으로 최대 선행시간 6시간까지 모델 예측 결과를 분석하였다. 이를 통해 물리과정 기반 모델과 머신러닝 기반 모델을 결합하는 Hybrid 기법을 적용하여 높은 정확도와 신뢰도를 가지는 고해상도 강수 예측 자료를 생성할 수 있음을 확인하였다.

  • PDF

Development of radar-based nowcasting method using Generative Adversarial Network (적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측 기법 개발)

  • Yoon, Seong Sim;Shin, Hongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.64-64
    • /
    • 2022
  • 이상기후로 인해 돌발적이고 국지적인 호우 발생의 빈도가 증가하게 되면서 짧은 선행시간(~3 시간) 범위에서 수치예보보다 높은 정확도를 갖는 초단시간 강우예측자료가 돌발홍수 및 도시홍수의 조기경보를 위해 유용하게 사용되고 있다. 일반적으로 초단시간 강우예측 정보는 레이더를 활용하여 외삽 및 이동벡터 기반의 예측기법으로 산정한다. 최근에는 장기간 레이더 관측자료의 확보와 충분한 컴퓨터 연산자원으로 인해 레이더 자료를 활용한 인공지능 심층학습 기반(RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), Conv-LSTM 등)의 강우예측이 국외에서 확대되고 있고, 국내에서도 ConvLSTM 등을 활용한 연구들이 진행되었다. CNN 심층신경망 기반의 초단기 예측 모델의 경우 대체적으로 외삽기반의 예측성능보다 우수한 경향이 있었으나, 예측시간이 길어질수록 공간 평활화되는 경향이 크게 나타나므로 고강도의 뚜렷한 강수 특징을 예측하기 힘들어 예측정확도를 향상시키는데 중요한 소규모 기상현상을 왜곡하게 된다. 본 연구에서는 이러한 한계를 보완하기 위해 적대적 생성 신경망(Generative Adversarial Network, GAN)을 적용한 초단시간 예측기법을 활용하고자 한다. GAN은 생성모형과 판별모형이라는 두 신경망이 서로간의 적대적인 경쟁을 통해 학습하는 신경망으로, 데이터의 확률분포를 학습하고 학습된 분포에서 샘플을 쉽게 생성할 수 있는 기법이다. 본 연구에서는 2017년부터 2021년까지의 환경부 대형 강우레이더 합성장을 수집하고, 강우발생 사례를 대상으로 학습을 수행하여 신경망을 최적화하고자 한다. 학습된 신경망으로 강우예측을 수행하여, 국내 기상청과 환경부에서 생산한 레이더 초단시간 예측강우와 정량적인 정확도를 비교평가 하고자 한다.

  • PDF

Design of a Hybrid Data Value Predictor with Dynamic Classification Capability in Superscalar Processors (슈퍼스칼라 프로세서에서 동적 분류 능력을 갖는 혼합형 데이타 값 예측기의 설계)

  • Park, Hee-Ryong;Lee, Sang-Jeong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.8
    • /
    • pp.741-751
    • /
    • 2000
  • To achieve high performance by exploiting instruction level parallelism aggressively in superscalar processors, it is necessary to overcome the limitation imposed by control dependences and data dependences which prevent instructions from executing parallel. Value prediction is a technique that breaks data dependences by predicting the outcome of an instruction and executes speculatively its data dependent instruction based on the predicted outcome. In this paper, a hybrid value prediction scheme with dynamic classification mechanism is proposed. We design a hybrid predictor by combining the last predictor, a stride predictor and a two-level predictor. The choice of a predictor for each instruction is determined by a dynamic classification mechanism. This makes each predictor utilized more efficiently than the hybrid predictor without dynamic classification mechanism. To show performance improvements of our scheme, we simulate the SPECint95 benchmark set by using execution-driven simulator. The results show that our scheme effect reduce of 45% hardware cost and 16% prediction accuracy improvements comparing with the conventional hybrid prediction scheme and two-level value prediction scheme.

  • PDF

Assessing the Utility of Rainfall Forecasts for Weekly Groundwater Level Forecast in Tampa Bay Region, Florida (주단위 지하수위 예측 모의를 위한 강우 예측 자료의 적용성 평가: 플로리다 템파 지역 사례를 중심으로)

  • Hwang, Syewoon;Asefa, Tirusew;Chang, Seungwoo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • 미래 기후 정보를 이용한 수문 환경의 단기 미래 예측은 안정적 수자원 공급을 위한 필수적 과제이다. 미국 플로리다 주 중서부 템파지역에서는 주요 수자원 중 하나인 지하수의 효과적 활용을 위해 지하수위 인공신경망 모델 (GWANN)을 개발하여 피압 대수층과 비피압 대수층에 대한 주 단위 평균 지하수위를 월별로 예측하고 그 결과를 수자원 공급 의사 결정에 반영하고 있다. 본 논문은 템파지역에 대한 GWANN 모델을 이용한 지하수위 예측 시스템을 소개하고 모델의 기후 입력 자료의 민감도를 분석함으로써 양질의 기후 정보에 대한 현 시스템의 활용성을 검토하였다. 2006년과 2007년에 대한 연구 결과, 관측 자료를 최적 예측 시나리오 (the best forecast)로 가정하여 적용한 결과는 지하수위 관측 지점에 따라 큰 차이를 보였지만 일반적으로 현 시스템 (현 시점의 실시간 주 단위 평균 강우량을 향후 4주간 동일하게 적용함) 에 비해 예측 성능이 개선되는 것으로 나타났다. 더불어 강우 관측 자료의 백분위 (percentile forecast; 20분위, 50분위, 80분위)를 강우 예측 자료로 활용한 경우에도 현 시스템과 비교하여 일부 나은 결과를 보여주었다. 그러나 지하수위 예측 모델을 활용하지 않고 현 시점의 지하 수위가 지속된다고 가정하는 경우 (na$\ddot{i}$ve model) 향후 2주간의 예측 결과가 best forecast 경우에 비해 높은 정확도를 보이는 등, GWANN 모델의 단기 예측에 대한 양질의 강우 예측 정보의 활용성은 낮으며, 향후 3주 이상에 대한 예측 성능에 있어 best forecast결과가 na$\ddot{i}$ve model 결과에 비해 높은 정확도를 보이기 시작하는 것으로 나타났다. 또한 GWANN 모델의 예측 성능은 적용 기간과 지역 및 지하대수층의 특성에 따라 큰 다양성을 가지는 단점을 보여 강우 예측 자료 활용에 앞서 모델 개선의 필요성이 있다고 판단된다. 본 연구는 단기수자원 공급 계획 수립을 위하여 사용되는 지역 모델링 시스템에 대한 기후 예측정보의 활용성 평가를 위한 방법론으로 고려될 수 있을 것으로 기대된다.

Performance Improvement of Prediction-Based Parallel Gate-Level Timing Simulation Using Prediction Accuracy Enhancement Strategy (예측정확도 향상 전략을 통한 예측기반 병렬 게이트수준 타이밍 시뮬레이션의 성능 개선)

  • Yang, Seiyang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.439-446
    • /
    • 2016
  • In this paper, an efficient prediction accuracy enhancement strategy is proposed for improving the performance of the prediction-based parallel event-driven gate-level timing simulation. The proposed new strategy adopts the static double prediction and the dynamic prediction for input and output values of local simulations. The double prediction utilizes another static prediction data for the secondary prediction once the first prediction fails, and the dynamic prediction tries to use the on-going simulation result accumulated dynamically during the actual parallel simulation execution as prediction data. Therefore, the communication overhead and synchronization overhead, which are the main bottleneck of parallel simulation, are maximally reduced. Throughout the proposed two prediction enhancement techniques, we have observed about 5x simulation performance improvement over the commercial parallel multi-core simulation for six test designs.

2-Level Adaptive Branch Prediction Based on Set-Associative Cache (세트 연관 캐쉬를 사용한 2단계 적응적 분기 예측)

  • Shim, Won
    • The KIPS Transactions:PartA
    • /
    • v.9A no.4
    • /
    • pp.497-502
    • /
    • 2002
  • Conditional branches can severely limit the performance of instruction level parallelism by causing branch penalties. 2-level adaptive branch predictors were developed to get accurate branch prediction in high performance superscalar processors. Although 2 level adaptive branch predictors achieve very high prediction accuracy, they tend to be very costly. In this paper, set-associative cached correlated 2-level branch predictors are proposed to overcome the cost problem in conventional 2-level adaptive branch predictors. According to simulation results, cached correlated predictors deliver higher prediction accuracy than conventional predictors at a significantly lower cost. The best misprediction rates of global and local cached correlated predictors using set-associative caches are 5.99% and 6.28% respectively. They achieve 54% and 17% improvements over those of the conventional 2-level adaptive branch predictors.

Development and application of dam inflow prediction method using Bayesian theory (베이지안 이론을 활용한 댐 유입량 예측기법 개발 및 적용)

  • Kim, Seon-Ho;So, Jae-Min;Kang, Shin-Uk;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.87-87
    • /
    • 2017
  • 최근 이상기후로 인해 국내 가뭄피해가 증가하고 있는 추세이며, 미래 가뭄의 심도 및 지속시간은 증가할 것으로 예측되고 있다. 특히 우리나라는 용수공급의 56.5%를 댐에 의존하여 댐 유역의 가뭄은 생 공 농업용수 공급제한 등의 광범위한 피해를 발생시킬 수 있다. 다만 가뭄은 홍수와 달리 진행속도가 비교적 느리기 때문에 사전에 정확한 댐 유입량 예측이 가능하다면, 용수공급량 조정을 통해 피해를 최소화할 수 있다. 국내에서는 댐 유입량 예측에 ESP (Ensemble Streamflow Prediction) 기법을 활용하고 있으며, ESP 기법은 과거 기상자료를 기반으로 미래를 예측하기 때문에 기상자료, 초기수문조건, 매개변수 등에 불확실성을 가지고 있다. 본 연구에서는 베이지안 이론을 이용하여 댐 예측유입량의 정확도 향상기법을 개발하고 예측성을 평가하고자 하며, 강우유출모델은 ABCD를 활용하였다. 대상유역은 국내의 대표 다목적댐인 충주댐 유역을 선정하였으며, 기상자료는 기상청, 국토교통부 및 한국수자원공사의 지점자료를 수집하였다. 예측성 평가기법으로는 도시적 분석방법인 시계열 분석, 통계적 분석방법인 Skill Score (SS)를 활용하였다. 시계열 분석 결과 ESP 댐 예측유입량(ESP)은 매년 월별 전망값의 큰 차이가 없었으며, 다우년 및 과우년의 예측성이 떨어지는 것으로 나타났다. 베이지안 기반의 댐 예측유입량(BAYES-ESP)는 ESP의 과소모의하는 경향을 보정하였으며, 다우년에 예측성이 향상되었다. 월별 평균 댐 관측유입량과 ESP, BAYES-ESP의 SS 비교분석 결과 ESP는 유입량 값이 적은 1, 2, 3월에 SS가 양의 값을 가졌으며, 이외의 월에는 음의 값으로 나타났다. BAYES-ESP는 ESP와 관측값이 비교적 선형관계를 나타내는 1, 2, 3월에 ESP의 예측성을 개선시키는 것으로 나타났다. ESP 기법은 강수량의 월별, 계절별 변동성이 큰 우리나라에 적용하기에는 예측성의 한계가 있었으며, 이를 개선한 BAYES-ESP 기법은 댐 유입량 예측 연구에 가치가 있는 것으로 판단된다.

  • PDF