최근 들어 ICT 분야의 발달에 따라 데이터 사용량의 급격한 증가로 인터넷 트래픽 사용량 예측은 중요성은 강조되고 있다. 이러한 예측치를 적절한 트래픽 관리와 제어를 위한 계획 수립에 도움을 준다. 본 논문은, 5분 단위의 인터넷 트래픽 자료를 이용하여 결합 예측 모형을 제안하고자 한다. 이에 대하여 시계열의 대표적인 3개 모형인 Seasonal ARIMA, Fractional ARIMA(FARIMA), Taylor의 수정된 Holt-Winters 모형을 적용하였다. 모형 간 결합 예측 방법으로 예측치 간의 SA(Simple Average) 결합 예측 방법과 OLS(Ordinary Least Square)를 이용한 결합방법, ERLS(Equality Restricted Least Squares)를 이용한 결합 예측 방법, Armstrong(2001)이 제안한 MSE 기반 결합 예측 방법을 사용한다. 이에 따른 결과로서 3시간에서의 예측은 Seasonal ARIMA가 선택된 반면, 6시간 이후 예측에서는 결합 예측 방법이 좋은 예측 성능을 보여준다.
H.264/AVC는 휘도 신호 $4{\times}4$ 블록을 위하여 9개의 화면 내 예측모드를 사용한다. 예측 모드는 8개의 방향성을 가진 모드와 하나의 비방향성 DC 모드가 있다. 휘도 신호 $16{\times}16$ 블록에서는 4가지의 예측 모드가 있으며 색차 신호 $8{\times}8$ 에서도 4개의 예측모드를 사용한다. 이러한 예측 모드들 중 최적의 예측 모드를 선택하기 위하여, 부호화기는 선택 가능한 모든 예측 모드의 율-왜곡 비용을 계산한 후, 최적의 율-왜곡 비용을 가진 예측 모드를 사용하여 부호화를 수행한다. 따라서 H.264/AVC의 화면 내 예측 과정은 많은 계산 복잡도를 가진다. 특히 하이 프로파일에서는 휘도 신호 $8{\times}8$ 블록이 화면 내 예측을 위해서 고려되므로 더욱 많은 계산 복잡도를 요구한다. 이에 본 논문은 H.264/AVC 하이 프로파일의 화면 내 예측의 부호화 계산 복잡도를 줄이는 방법을 제안한다. 현재 매크로 블록의 분산을 계산한 후, 이를 이용하여 율-왜곡 최적화에 후보로 사용되어지는 블록 모드를 결정하고, 각 블록 모드에서 제공하는 예측 모드들을 효율적으로 선택하는 방법을 연구 개발하였다. 제안된 방법은 기존 H.264/AVC 참조 소프트웨어인 JM13.1 부호화 시간 대비 약 83%의 연산시간이 감소하는 결과를 보였다.
시계열 자료의 분석과 예측은 수문학분야에서 매우 중요하면, 최근 들어 특정한 수문시계열에서 카오스 특성이 발견되고 있다. 카오스 특성을 갖는 수문시계열의 예측에 있어, 기존의 거의 모든 연구는 시스템의 특성을 파악한 뒤 예측을 실시하는 표준접근법이 채택되어왔다. 그러나 Phoon 등은 시스템의 특성분석에 앞서 예측을 실시하고, 상태공 매개변수가 시스템의 특성분석단계가 아닌 예측단계에서 평가되는 가역접근법을 제안하였다. 본 연구에서는 Phoon 등이 제안한 가역접근법과 기존에 널리 적용되어온 표준접근법을 실제 일유출량 자료에 적용함으로써, 가역접근법의 적용성을 검토하고 카오스 시계열의 특성을 파악하였다. 본 연구에서 사용한 비선형 예측 기법으로는 카오스이론이 적용된 부분근사화 기법을 이용하였다. 카오스 특성분석을 통해, Bear 강 일유출량 시계열 자료에서 카오스 특성이 나타남을 알 수 있었다. 표준접근법과 가역접근법을 이용하여 Bear 강의 일유출량 자료에 대하여 예측을 실시한 결과, 카오스 특성을 갖는 일유출량 시계열 자료의 단기 예측의 우수성을 알 수 있었으면, 가역접근법이 표준접근법에 비해 좋은 결과를 나타내었다. 특히, 가역접근법은 예측단계에서 예측시간(T)에 대하여 예측매개변수를 최적화시킴으로써 보다 정밀한 예측을 할 수 있었으며, 시스템에 대한 정보손실이 발생하였을 경우 예측에 대한 상태공간 매개변수를 다시 추정해야 하는 표준접근법에 비해 실제적 적용성이 매우 우수하였다.
부하예측의 경우 가장 중요한 문제는 특수일의 부하를 예측하는 것이고, 따라서 본 본문은 과거 특수일 부하 데이터를 이용하여 신경회로망 모델에 의해서 특수일 피크부하를 예측하는 방법을 제시한다. 특수일 부하는 예측되었고, 예측 오차율은 광복절을 제외하고는 l∼2% 정도의 비교적 우수한 예측결과를 도출하였다. 따라서 사용한 예측 모델은 특수일의 부하에 만족스러운 정밀한 예측이 가능하고. 신경회로망은 특수일 부하 예측의 결과를 검증하기 위해 4차 직교다항식모형과 특수일 부하의 예측에효과적인 패턴 변환비를 이용한 신경회로망 모형을 구성했다. 한편, 시간별 특수일의 부하예측에도 신경회로망을 적용한 특수일 부항예측의 경우와 같은 양호한 예측결과를 보였다.
복잡한 기상조건 하에서 강우의 예측은 수문 기상 분야에서 필수적인 과정이라 할 수 있다. 특히 월 단위의 강우 예측은 장기적인 수자원 관리 및 계획 수립 시 매우 중요한 기준이 되기 때문에 보다 정확하고 신뢰도 있는 예측을 필요로 하고 있다. 이를 위해 전 지구적 기후 변동의 양상을 수치화 하여 나타낼 수 있는 기상인자의 활용이 활발해지고 있으며 다양한 모형을 기반으로 한 강우 예측이 수행되고 있다. 최근에는 인공지능 기법을 활용한 인공신경망 모형의 적용이 활발해짐에 따라 높은 예측력을 바탕으로 강우 예측에 대한 연구가 이루어지고 있지만 초기 가중치의 무작위성 또는 과적합으로 인한 문제도 함께 나타나고 있다. 본 연구에서는 인공신경망 모형의 활용성을 높이고 신뢰성을 확보하기 위한 강우 예측을 수행하고자 하였다. 이를 위해 다양한 기상인자를 활용하여 인공신경망 모형을 위한 정보를 구축하고 인공신경망 모형을 통해 생성되는 결과로부터 단일 예측이 아닌 앙상블 예측을 활용함으로써 강우 앙상블을 생성하고 조합하였다. 그 결과 인공신경망 모형을 통한 단일 예측보다 앙상블을 통한 예측으로 안정적이고 정확한 예측 결과를 산정할 수 있었으며 기존에 인공신경망 모형을 통한 예측의 문제점을 보완할 수 있었다.
H.264/AVC의 인트라 예측모드는 가변 크기 블록과 예측 부호화를 사용하여 압축효율을 높이고 있다. 인트라 예측 모드는 $16{\times}16$블록, $4{\times}4$블록에 대해 수행되며, 예측 모드는 참조픽셀의 위치와 예측 방향에 따라 구분된다. 기존의 예측모드는 왼쪽과 위쪽의 참조 픽셀을 가지고 예측을 하게 된다. 이 경우, 참조 픽셀과의 거리가 먼 픽셀들의 예측 정확도가 떨어진다. 본 논문에서는 예측 정확도를 향상시켜 부호화 효율을 최대화 할 수 있는 인트라 예측 방법을 제안한다.
한국지능정보시스템학회 2000년도 춘계정기학술대회 e-Business를 위한 지능형 정보기술 / 한국지능정보시스템학회
/
pp.227-234
/
2000
지금까지 수행된 대부분의 유가예측은 주고 계량 데이터를 기반으로 하는 여러 가지 계량 모델을 구성하여 수행되었으며, 그 결과 산유국 동향과 같은 국제 유가시장의 불확실성을 제대로 반영하지 못했다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위하여 계량경제학적인 접근방법과 전문가시스템을 통합한 유가예측 시스템을 설계 및 구현하였다. 즉, 계량 데이터를 기초로 유가예측 모델을 구성하고, 산유국동향과 같은 비계량적인 요인이 유가에 미치는 영향에 대한 실무자의 경험적인 지식은 지식베이스로 구축함으로써, 유가예측과 관련된 다양한 요인들을 폭넓게 고려할 수 있는 통합된 시스템을 개발하였다. 유가예측 모델로는 대표 유종의 유가 및 수급 전망을 위한 동적 선형연립 모델과 유종간 유가의 균형차액을 예측하기 위한 Fully Modified 공적분 회귀분석 모델을 구성하였으며, 유가예측 모델에서 반영하기 어려운 산유국 동향이나 OPEC정책, 선물시장 동향 등은 실무자의 경험적인 지식을 바탕으로 시스템 예측변수로 설정하여 유가예측에 반영할 수 있도록 지식베이스를 구축하였다. 또한, 본 시스템에서는 유가예측 이외에 석유 수급을 전망하고, 유가 및 수급과 관련된 다양한 정보를 제공하고 관리하는 기능을 제공하고 있다.
국내에서 이용되는 예측모델은 국립환경과학원식, 도로공사의 HW-NOISE, KHTN, 소음지도에 이용되는 외국의 RLS90, NMPB 등이 있다. 이러한 예측모델은 예측 방법 및 표현에 따라 예측식 2D(국립환경과학원식, HW-NOISE)와 3D로 예측(KHTN, RLS90, NMPB 등)으로 구분할 수 있다. 본 연구는 도로 주변 공동주택에서의 소음실측 및 예측식별 예측값을 통하여 예측식의 오차 및 오차의 원인을 분석하고 예측식의 적용방법에 대하여 고찰하였다.
캐쉬를 사용하는 분산 공유 메모리 시스템에서는 캐쉬들 사이의 일관성 유지를 위한 지연 시간이 성능에 큰 영향을 미친다. 최근에는 각 공유 메모리의 일반적인 접근 패턴을 학습하여 일관성 유지의 예측적 수행을 가능하게 하는 메모리 공유 패턴 예측기가 연구되고 있다. 기존의 메모리 공유 패턴 예측기는 패턴 정보를 저장하기 위해서 모든 메모리 블락마다 예측 테이블들을 할당하지만 실제로 성능 향상에 도움을 주는 테이블들은 소수에 불과하다. 본 논문에서는 적은 양의 패턴 저장 공간을 사용하면서 기존의 예측기와 유사한 성능을 낼 수 있는 캐쉬 구조의 메모리 공유 패턴 예측기를 제안한다, 제안된 예측기에서는 좋은 성능을 내는 예측 테이블들을 선택적으로 저장하게 하는 효율적인 테이블 교체 기법이 요구된다. 본 논문에서는 LRU 교체 기법을 캐쉬 구조의 예측기에 적용시켰을 때의 문제점을 분석하고 제안된 예측기의 특성에 적합한 테이블 교체 기법을 제안한다.
유역의 하천관리 및 홍수관리를 위하여 강우량을 정확하게 예측하고자 많은 수문학자들에 의해 강우량을 예측하는 연구를 진행하였다. 강우를 예측하기 위한 여러 가지 방법 중 인공신경망을 이용하여 강우를 예측하는 선행연구들을 살펴볼 수 있었다. 그러나 기존에 강우량을 예측하는 사례들을 살펴보게 되면, 강우사상이 발생된 후 강우량 예측은 비교적 높은 정확도를 가지고 있으나, 강우가 발생하기 시작하는 시점에 대한 강우량 예측은 그 정확성이 떨어지는 것을 확인할 수 있었다. 이에 본 연구에서는 무강우 기간에도 보다 정확하게 강우량을 예측할 수 있는 인공신경망 모델을 제안하고자 한다. 이를 위해 강우량 이외에도 기온, 풍속, 습도, 증기압, 전운량을 인공신경망의 입력자료로 활용하고자 하였다. 입력자료을 구성을 여러 가지 CASE로 구분하여 부산지점의 강우량을 예측하고 그 정확성을 평가하고자 하였다. 이 때, 사용되는 자료는 기상청 부산지점에서 제공하고 있는 1시간 간격자료를 적용하였다. 본 연구를 통해 개발된 인공신경망 모형을 이용하여 예측된 강우량은 부산 내에 위치한 하천관리 뿐 만 아니라 하천의 홍수 예 경보에 필요한 기초적인 자료로 활용될 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.