본 연구에서는 관측자료 기반의 안개 예보를 수행하기 위해 특징선택을 이용한 SVR 회귀분석 기반 시정 예측 가이던스를 개발하였다. 예측에 필요인자를 사전에 선택하는 유전알고리즘 기반의 최적화 방법을 적용하여, 관측된 여러 기상인자의 입력인자 중 실제 시정을 예측하기 위한 입력인자를 선택하여 준다. 지점별 안개발생에 필요한 입력인자 및 예측 모델을 구성하여 통합적인 예측 모델이 아닌 각 지점에 최적화된 정보를 제공할 수 있도록 예측을 수행한다. 자료의 수집 특성상 3시간 간격으로 3시간 예보를 위한 시정을 예측하고, 예측 모델의 검증을 위해 현업의 수치모델 기반의 시정예측 정보와의 비교를 통해 실제 안개 시점에 대해 비교 분석하였고 그 결과를 통해 긍정적인 효과를 보였다. 예측모델을 적용하여 지도에 예측시정 정보를 제공하는 표출 시스템을 통해 실시간 가이던스를 제공하고자 연구를 수행하였다.
Neural network is one of the most notable technique. It usually provides more powerful forecasting models than the traditional time series techniques. Employing the Ensemble technique in forecasting model, one should provide a initial distribution. Usually the uniform distribution is assumed so that the initialization is noninformative. However, it would be expected a sequential informative initialization based on data rather than the uniform initialization gives further reduction in forecasting error. In this note, a modified Ensemble algorithm using sequential initial probability is developed. The sequential distribution is designed to have much weight on the recent data.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.263-267
/
2010
최근 지구온난화, 엘니뇨 및 라니냐 등 지구환경 변화에 따른 기후변화의 영향으로 지구상의 많은 지역에서 집중호우가 발생하고 있으며 우리나라도 예외 없이 매년 되풀이되고 있다. 이로 인해 발생하는 홍수피해를 경감하기 위해서 홍수조절용 다목적 댐 건설과 같은 구조적 대책과 홍수를 사전에 예측할 수 있는 홍수예경보 시스템 구축과 같은 비구조적 대책의 마련이 필요하다. 일반적인 홍수예경보 시스템은 강우 관측치를 강우-유출 모형 및 수리해석 모형의 입력 자료로 하여 홍수량 및 홍수위를 계산하고 그 결과를 이용하여 운영된다. 그러나 집중호우와 같은 악기상 조건에서는 관측강우자료를 이용한 유출해석 결과로 홍수예경보 시스템을 운영 할 경우 예방 대응시간의 부족으로 인해 방재 효율성이 떨어지게 된다. 따라서 미래에 발생할 강우를 사전에 예측하고, 이를 효율적으로 유출 모형과 연계하여 홍수발생 이전에 홍수발생 가능성을 예측할 수 있는 홍수 모의시스템을 구축하는 것이 필요하다. 이를 위해 본 연구에서는 중규모 수치예보모형인 WRF 모형(Weather Research and Forecasting model)으로 모의된 2007년 태풍 '나리' 사상의 예측강우를 이용하여 유역평균강우를 산정하였으며, 산정된 예측강우를 도시유역유출모형인 SWMM과 2차원 침수모의가 가능하도록 개선한 CASC2D 모형에 활용하여 침수현상을 모의하였다. 실제 침수흔적과 모의된 결과의 비교를 통해 예측강우를 이용한 침수예측 및 홍수예보의 가능성을 평가한 결과, 과소추정된 예측강우의 영향으로 인해 모의된 침수심이 실제보다 작게 발생하였으나 침수발생 위치는 대체적으로 정확하게 모의하는 것으로 나타났다.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.346-346
/
2023
한국은 기상·수문정보의 예측이 기상 및 기후 측면에서 주도적으로 이루어지고 있다. 그러나 단기 및 중기 수자원 평가 및 분석을 위해 필요한 시공간적 규모, 정확도, 평가체계를 고려한 기상 기후 예측정보의 활용 방안이 마련될 필요가 있다. 이에 본 연구에서는 미래 수자원 평가 및 분석을 위한 방안을 마련하고자 국내 경안천 유역을 대상으로 하천유량을 예측하고 평가하였다. 이를 위해, 우리는 세계기상기구(World Meteorological Organization, WMO)에서 회원국을 대상으로 배포 중인 수자원 평가 도구인 동적수자원평가시스템(Dynamic Water resources Assessment Tool, DWAT)을 경안천 유역에 대하여 구축하고, 과거 관측 기상 및 유량 자료를 이용하여 매개변수를 보정하였다. 앙상블 하천유량 예측을 위해서 전지구적인 기후 패턴과 국내 기상 특성 간의 상관성 분석 후 이를 예측인자로 활용하여 다중회귀모형과 인공신경망 모형으로부터 생성된 1,000개의 앙상블 강우 및 기온 예측정보를 DWAT의 입력자료로 이용하였다. 2022년에 대한 앙상블예측정보를 DWAT의 입력자료로 사용하여 앙상블 하천유량이 예측되었다. 예측된 일-단위 하천유량은 실제 관측유량과 차이를 보이나 이는 예측된 앙상블 강우 및 기온정보의 오차에 기인하는 것으로 보인다. 이러한 결과는 수문 모형 결과의 오차는 강제 자료의 오차에 큰 영향을 받는 한계를 다시 한번 확인시켜준다. 따라서 단기·중기 수자원 평가 및 분석을 월-단위 하천유량으로 변환하여 월별 통계치를 분석하는 방향을 고려할 필요가 있다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.131-131
/
2022
기후변화의 영향으로 극치강우의 변동성이 커지고 있으며 계획빈도를 초과하는 폭우로 피해가 증가하고 있다. 기존의 물리기반의 홍수예측모델은 개념적 및 구조적 제약과 함께 다양한 유역조건 및 수문기상 조건에 기인한 강우-유출 관계의 불확실성을 고려하는 데 한계가 있다. 특히 한정된 홍수 사상을 통해 구축된 관측 자료로 인해 새로운 홍수 사상 예측 능력이 저조할 수밖에 없다. 따라서 기존 물리모형 기반의 홍수예측과 함께, 딥러닝(deep learning) 모형을 고려한 홍수예측 모델 개발과 개선이 필요하다. 본 연구에서는 다양한 분야에서 활용되는 인공지능(artificial intelligence, AI) 기술을 종합적으로 검토하고, 홍수 예측 측면에서의 활용 가능성 및 신뢰성을 고려하여 AI 기법을 채택하였다. 한강수계에 존재하는 댐 중 일부를 선정하여 대상 댐의 수문·기상학적 자료를 전처리한 후, 인공지능 기반의 홍수예측모형을 구축 및 최적화하였다. 다양한 예측인자와 모델 구성으로 홍수예측력에 대한 평가를 다각적으로 수행함으로써 홍수예측모델의 신뢰성을 제고하였다. 전반적으로 우수한 결과를 도출하였고, 유역면적이 작을수록 결과가 좋았다. 이는 넓은 유역일수록 복잡한 강우-유출 과정이 내재되어 있기 때문으로 판단되며, 넓은 유역에는 본 연구에서 활용한 자료에 추가적인 자료를 도입하여 모형 개선이 이루어져야 할 것으로 판단하였다. 수문 예측 연구에 통계모형이나 기계학습모형의 적용은 많이 있었지만, 딥러닝 기법 활용은 새로운 시도라는 점에서 의미가 있다.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.60-60
/
2020
기후변화 및 지구온난화로 인한 자연재해 규모가 점차 대형화, 다양화되고 있어 이로 인한 피해도 증대되고 있다. 특히, 다양한 시설과 인구밀도가 높은 도심 지역은 집중호우, 태풍, 홍수 등 자연재해에 취약하여 인적·물적 피해 위험성이 매우 높다. 방재 시설확보 및 개선을 통한 더 높은 안정성 및 기상예보를 통한 대응, 대책을 통한 피해 저감이 이루어지고 있다. 그러나 일반적으로 제공되는 단일 수치모형 기반의 결정론적 기상예측정보는 기상 상태, 선행시간, 모형 매개변수 등으로 인한 불확실성이 매우 크며 이에 대한 정보가 제공되지 않다. 이러한 문제점을 보완하기 위해 앙상블 수치모델 정보와 기상레이더 자료 기반의 단기 예측정보가 활용이 가능하다. 그러나, 앙상블 수치모델의 불확실성, 기상레이더 기반 예측정보의 짧은 예측 선행시간으로 인해 수문학적 모형에 입력자료로 활용은 어려운 실점이다. 본 연구에서는 지점 관측자료의 시간적 연속성, 기상레이더 자료의 공간적 연속성, 앙상블 예측정보의 선행시간 정보를 융합하여 기상예측정보에 대한 불확실성 개선 및 선행시간에 따른 정확도를 높일 방법을 제안하였다. 기상청에서 제공하는 앙상블 예측자료인 LENS 자료, 레이더 강수량, ASOS 관측자료 기반으로 분석이 수행되었으며 분석결과는 예측강수량을 활용하는 분야에 긍정적 영향을 미칠 것으로 기대된다.
Dental arch expansion is one of the method used to solve the dental crowding problem by non-extraction. Many formulae using tooth size have been suggested to predict ideal inter-premolar and inter-molar width. The purpose of this study was to evaluate the adequacy of some upper dental arch width prediction methods, namely Pont's method, Schmuth's method and Cha's method. The sample consisted of the casts of 119 Korean young adults who had no muscular abnormality, no skeletal discrepancy, and Angle's Class I molar relationships. Measurements were obtained directly from plaster casts; they Included mesiodistal crown diameters of the four maxillary incisors, as well as maxillary inter-first-premolar and inter-first-molar arch widths as specified by Pont. The correlation coefficients between the sum of incisors(SI) and upper dental arch width were calculated. The differences between predicted width and actual width were classified as overestimated, properestimated, and underestimated. The data obtained from each group were analyzed for statistical differences. The results were as follows : 1. Upper dental arch width indices were calculated from SI in normal occlusion (81.96 : premolar index, 62.55 : molar index). 2. Low correlations between SI and arch width were noted in normal occlusion (0.50 in the inter-premolar width, 0.39 in the inter-molar width). 3. Pont's formula and Schmuth's formula tended to overestimate the inter-premolar width. A more even distribution of estimates was noted in Cha's fomula. 4. Cases within $\pm$1 mm range of observed inter-premolar width were $45\%$ in the Cha's formula, $40\%$ in the Pont's formula, and $39\%$ in the Schmuth's formula. 5. All formulae had a tendency to underestimate the inter-molar width, but Cha's formula had better predictability than others. 6. Cases within $\pm$1 mm range of observed inter-molar width were $40\%$ in the Cha's formula, $29\%$ in the Pont's formula, and $13\%$ of Schmuth's formula. The data presented in this study does not support the clinical usefulness of ideal arch width prediction methods using the mesiodistal width of maxillary incisors.
This paper studies the financial analyst's forecasting activities on the firm's operating performance during the period from 1999 to 2003. In this study, financial analyst's forecasting activities are focused on the sales, operating income and net income and financial analyst's forecasting accuracy, forecasting revising patterns and forecasting activities to the unexpected firm's operating performance are studied. Some empirical findings in this study are as follows. First, standard estimate error on the sales, operating income and net income are all significantly negative value and so financial analyst's forecast on the firm's operating performance are upwardly biased. Second, domestic financial analyst's forecasting activities is relatively more accuracy than foreign financial analyst's forecasting activities. Third, forecasting time is more close to the end of the operating performance announcement day, forecasting activities are more accuracy. Fourth, comparing with individual financial analyst's forecast, consensus forecast is more accuracy. Fifth, in the comparative forecasting activities study according to the prior firm's operating performance, financial analyst's forecasting revision activities are found to be upward or downward. Sixth, financial analysts overreact in the sales forecast and underreact in the operating income and net income forecast. Seventh, in the empirical analysis on the Easterwood-Nutt's test model(1999) which the firm's performance change are divided into the expected performance change and the unexpected performance change, it is found that financial analyst's forecasting activities on the firm's operating performance are systematically optimistic.
To support an efficient management of software verification and validation activities, many defect prediction models have been proposed based on object oriented metrics. In order to apply defect prediction models, we need to determine a threshold value. Because we cannot know actually where defects are, it is difficult to determine threshold. Therefore, we performed a series of experiments to explore the issue of determining a threshold. In the experiments, we applied defect prediction models to other systems different from the system used in building the prediction model. Specifically, we have applied three models - Olague model, Zhou model, and Gyimothy model - to four different systems. As a result, we found that the prediction capabilities varied considerably with a chosen threshold value. Therefore, we need to perform a study on the determination of an appropriate threshold value to improve the applicably of defect prediction models.
In this paper, we propose two predictive spatial data mining based on spatial statistics and apply for predicting the forest fire hazardous area. These are conditional probability and likelihood ratio methods. In these approaches, the prediction models and estimation procedures are depending un the basic quantitative relationships of spatial data sets relevant forest fire with respect to selected the past forest fire ignition areas. To make forest fire hazardous area prediction map using the two proposed methods and evaluate the performance of prediction power, we applied a FHR (Forest Fire Hazard Rate) and a PRC (Prediction Rate Curve) respectively. In comparison of the prediction power of the two proposed prediction model, the likelihood ratio method is mort powerful than conditional probability method. The proposed model for prediction of forest fire hazardous area would be helpful to increase the efficiency of forest fire management such as prevention of forest fire occurrence and effective placement of forest fire monitoring equipment and manpower.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.