• Title/Summary/Keyword: 예측강우분석

Search Result 821, Processing Time 0.04 seconds

Development and Operation of Mountainous River Basin Monitoring System (격자기반의 산지하천 모니터링 시스템 개발 및 운영)

  • Kim, Kyung-Tak;Park, Jung-Sool;Won, Young-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.215-215
    • /
    • 2011
  • 우리나라 하천의 대부분은 산지에서 발원하며 전 국토의 약 67%가 산지하천 유역에 포함된다. 최근 기후변화로 인해 여름철 집중호우가 증가하고 있는 상황에서 강우의 예측이 어렵고 경사가 급한 산지하천 유역의 피해가 가중되고 있으며 돌발홍수나 산사태와 같은 산지재해 예방을 위한 대책 마련이 시급히 요구되고 있다. 산지하천유역에서 발생하는 재해를 예방하고 피해를 저감하기 위해서는 재해위험지역에 대한 선정 및 상시 모니터링 체계의 구축이 필요하며 본 연구에서는 격자기반의 산지하천 모니터링 시스템을 구축하여 강우상황과 예측정보, 이동상황을 모니터링 할 수 있는 시스템을 구축하였다. 산지하천 모니터링 시스템은 기상청 레이더 강우를 활용한 실시간 강우자료 및 강우예측자료(MAPLE) 표출, 분포형 수문모형과 연계한 유출분석 결과의 제공, AWS를 이용한 지점강우량 표출 등으로 구성된다. 또한, 지점자료 혹은 격자자료로 이원화되어 있는 기존 하천유역 모니터링 체계를 통합하여 사용자가 원하는 유역에 대한 기상자료의 모니터링과 위험지역에 설치된 지점관측정보를 연계 운영할 수 있도록 구현된 특징이 있다. 본 시스템은 현재 강원도 인제 내린천 유역을 대상으로 시험운영 중이며 격자기반의 강우모니터링과 토석류 현장모니터링 결과를 연계한 위험지 관리에 활용되고 있다.

  • PDF

Analysis of the Groundwater level and Characteristic of the Slope-related Disasters according the Infiltration (침투량에 따른 사면재해의 특성 및 지하수위 분석)

  • Moon, Young-Il;Shin, Dong-Jun;Oh, Keun-Taek;Shin, Heung-Kun;Lee, Su-Gon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1507-1512
    • /
    • 2007
  • 우리나라에서 발생하는 사면재해는 7월${\sim}$9월, 즉 태풍 및 집중호우가 발생하는 시기에 대부분 나타나며 이를 통해 강우는 사면재해를 유발시키는 가장 중요한 요인임을 알 수 있다. 사면재해는 매우 짧은 시간에 일어나며, 큰 피해를 발생시키는 특징을 가지고 있다. 따라서 강우 발생시 사면의 안정성을 검토하는 경우에 보다 합리적으로 강우의 특성을 적용할 수 있다면 강우로 인해 발생될 수 있는 사면재해를 미리 예측하고 이에 대비할 수 있을 것이라 판단된다. 사면 해석시 강우에 대한 인자는 강우강도를 적용하며, 이는 사면에 거의 모든 강우가 침투된다고 가정하여 지하수위를 산정하지만, 이는 유출을 고려하지 않은 결과이다. 본 논문에서는 지하수위 예측 프로그램인 SEEP/W 프로그램을 이용하여 침투량에 따른 사면의 지하수위 변화를 예측해 보았다. 이를 위해 기상청 산하 서울 지점의 1961년부터 2005년까지의 시간 강우량 자료를 이용하여 확률강우량을 산정하였고, 산정된 값을 해석적 침투모형에 의하여 침투량을 계산하여 합리적으로 침투량을 해석단면에 적용하여 지하수위가 시간에 따라 어떻게 변화하는 지를 연구하였다.

  • PDF

Prediction of Changes in Water Level in Sewage Pipes Using ESN Algorithm Reflecting Spatial Rainfall Characteristics (시공간적 강우특성이 반영된 ESN 알고리즘을 활용한 하수관로 수위 변화 예측)

  • So Hyun Lee;Dong Ho Kang;Byung Sik Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.460-460
    • /
    • 2023
  • 최근 범 지구적인 기후변화로 인해 집중호우가 빈번히 발생하고 침수피해가 증가하고 있다. 이에 따른 침수 피해 위험이 큰 지하상가, 지하 주차장, 반지하 주택 등의 침수 발생이 잦아지며 인명 및 재산 피해 발생이 커지고 있다. 이러한 지역은 인근 하수관로의 수위에 따라 침수 영향을 크게 받게 된다. 이에 따른 강우·유출 관계는 침수피해에 대해 대처하기 위해 시공간적 강우 특성이 반영된 하수관로 수위 예측이 중요하다고 판단된다. 이에 본 연구에서 수위 자료는 서울시 하수관로 수위 현황 자료를 활용하였으며, 강수량 자료는 서울 내 서초구 일대의 강수량 자료를 활용하여 연구를 진행하였다. 대상 지역은 저지대에 위치해 침수가 잦은 서초구 서초동으로 선정하였으며, 분석에 사용된 기간은 2012년부터 2021년까지의 수위 자료를 화용하여 이를 바탕으로 순환 신경망인 RNN의 일종이며, 다른 모델의 구조와 비교하여 더욱 간단하고 효율적인 ESN(Echo State Network) 알고리즘을 사용하여 수위 예측을 진행하였다. 분석을 위해 대상 지역의 강수 사상이 발생하여 하수관로의 수위의 변동이 큰 기간을 선정하여 분석을 실시하였다. 2012년부터 2018년까지의 자료를 학습(training) 자료로 활용하였으며, 모형의 검증 위해 통계분석을 실시하여 검증하였다.

  • PDF

Implementation plan of integrated regional flood information system (광역·국지적 통합 홍수 정보 시스템 구축방안)

  • LEE, Yong-Hyeon;HWANG, Eui-Ho;CHAE, Hyo-Sok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.473-473
    • /
    • 2017
  • 최근 광역 및 국지적 호우의 발생빈도 증가로 인해, 능동적 대응 기술 개발과 실용화가 필요하다. 홍수재해 관련정보의 경우 전문기관 및 정부부처를 위한 홍수정보 표출 시스템은 구축되어 있다. 그러나 홍수재해의 분석, 모니터링, 예경보 시스템 구축 등 홍수정보 요소기술의 웹기반 실시간 홍수 예측시스템 연계가 미흡하다. 이에 홍수 예측 및 조절 등 다양한 정보의 연계 및 공동 활용요구가 증가되고 있으므로 각각의 정보를 실시간으로 분석하고 모니터링 할 수 있는 체계를 수립하고 통합 정보시스템 기반을 마련해야할 필요가 있다. 국내에서 수재해의 광범위한 관측과 정확한 평가 및 예측을 위해 위성 레이더 및 관측장비 자료를 활용한 시스템 구축에 대한 연구가 활발히 진행되고 있다. 이와 관련하여 위성 레이더 및 관측장비 분야별 시스템들을 연계하여 통합 홍수 정보 시스템 구축방안을 제시하고자 한다. 이를 위해 위성 레이더 및 관측장비 기반 TRMM, GPM 등의 위성강우, AWS, 고정밀 소형 레이더, UAV를 이용한 실시간 모니터링 등의 관측 자료를 수집이 필요하다. 그리고 홍수를 감시 평가 예측 등에 필요한 강수량, 수위, 토양수분, 하천범람범위 등의 수문정보를 분석 평가하는 효율적인 광역 및 국지적 홍수 대응 관리체계를 구축해야 한다. 이에 본 연구에서는 광역 및 국지적 홍수 피해 범위와 규모 등을 평가 산정하고 정확히 예측하기 위해 국내에서 활용되고 있는 위성 레이더 및 관측장비 기반의 기술들을 연계 활용하여 시스템을 구축하고자 한다. 먼저, 시스템에서 고정밀 소형레이더 기반 강우추측을 통해 수문정보와 연계하여 레이더 관측지역에 대한 국지적 호우 및 침수 예측을 할 수 있다. 또한 위성 및 관측장비 기반 위성영상을 통해 침수지역 분석 및 위성강우를 평가하여, 광역 홍수재해 및 침수지역을 분석할 수 있다. 추가적으로 UAV 관측장비를 활용하여 하천의 홍수범람범위를 관측하여 침수지역 분석에 대한 정확도를 높일 수 있다. 이와 같은 광역 및 국지적 홍수 정보를 체계적으로 감시 평가 예측 할 수 있는 통합적인 홍수 대응 및 관리 시스템 구축으로 연간 홍수 피해규모 저감을 위한 선제적 대응 관리 시스템으로 활용될 것으로 기대된다. 또한 이를 통해 홍수 관련 정보를 분석 관리 할 수 있는 수자원 분야에 혁신적인 시스템을 확보하는 소중한 토대가 될 것으로 사료된다.

  • PDF

Application of Hydrologic Analysis System for Large Scale River (대하천 수문분석 시스템의 적용)

  • Hwang, Man-Ha;Ko, Ick-Hwan;Lee, Sang-Jin;Jeong, Woo-Chang;Maeng, Seung-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1426-1429
    • /
    • 2005
  • 실시간 통합 물관리 운영을 위한 강우예측시스템에서 제시되는 예측강우량과 강우시나리오 및 실시간 또는 단기간(10일 이내)의 용수수요와 공급을 위한 분석 기술을 RRFS에 연계함으로써 한정된 수자원의 효율적 이용을 도모하였다. 이를 위한 기술로서 용수수요량(취수량)과 하천유황을 실시간으로 취득$\cdot$관리하기 위한 물 정보관리기술을 개발하고, 장단기 하천유량의 예측을 위한 하천의 연속 유출량 예측기술을 개발하였으며 모의 운영 하였다.

  • PDF

Development of Flash Flood Forecasting system Based on Rainfall Radar (강우레이더 기반 전국 도시·산지·소하천 돌발홍수예측 시스템 개발)

  • Hwang, Seok Hwan;Yoon, Jung Soo;Kang, Na Rae;Noh, Hui Seong;Lee, Keon Haeng;Won, Yoo Seung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.371-371
    • /
    • 2020
  • 도시 및 소규모 산지 유역에서와 같이 지체시간이 짧은 유역에서 발생하는 돌발홍수는 더 이상 우량계만으로 예보가 불가능하다. 그리고 지역에 따라 침수시간이나 침수심이 달라지기 때문에 지역에 따른 침수특성과 유속특성의 관계식을 산정하여 홍수예보 기준을 설정하였다. 더불어 도달시간이 짧은 도시 및 산지에서는 지체시간 외에 강수 예측을 통한 홍수예보 선행시간을 확보하는 것이 매우 중요하다. 본 연구에서는 한강홍수통제소의 강우레이더 기반 초단기 외삽 예측을 입력자료로 활용하여 돌발홍수 예측 시스템을 구축하였다. 강우레이더 기반 초단기 외삽 예측은 강우강도를 입력으로 사용하기 때문에 예측에 별도의 정량 보정이 필요하지 않다는 장점이 있다. 2019년도에 발생한 다양한 홍수 사고 사례를 분석하여 본 시스템에 대한 정확도를 평가하였다. 본 시스템은 동(읍/면) 단위로 1시간 선행 예보를 3단계 위험 정보(주의/경계/심각)로 제공할 수 있다.

  • PDF

Flood Predicion of Dorimcheon Stream basin using LSTM (LSTM 기법을 이용한 도림천 유역의 침수 예측)

  • Se Dong Jang;Byunghyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.513-513
    • /
    • 2023
  • 최근 이상기후의 영향으로 국지성 및 집중호우로 인한 침수 피해가 증가하고 있다. 도시유역의 홍수는 사회적·경제적으로 큰 손실을 야기할 수 있어 실제 호우에 대한 침수 양상을 신속하게 예측하는것은 매우 중요하다. 이로 인해 침수 해석에 대한 결과를 빨리 제공할 수 있는 기계학습을 기반으로 한 도시 홍수 분석에 대한 연구가 증가하고 있다. 본 연구에서 적용한 LSTM(Long Short-Term Memory) 신경망은 기존 RNN(Recurrent neural network)이 가지고 있는 장기 의존성 문제를 해결하기 위해 고안된 모델으로 시계열 데이터에 대한 예측능력이 뛰어나다는 장점을 가지고있다. LSTM 신경망은 강우에 대한 격자별 침수심을 예측하기 위해 사용되었으며, 입력자료로 2000~2022년도에 걸친 도림천 유역의 침수피해를 야기한 지속시간 6시간 AWS(Automatic Weather System) 관측 강우 자료를 사용하였고 목표값으로 수집된 도림천 유역의 강우자료를 이용하여 SWMM(Storm Water Management Model)의 유출 결과를 바탕으로 수행된 2차원 침수해석 모의 결과를 사용하였다. 연구유역의 SWMM 배수 관망 입력자료의 정확성을 높이기 위해 서울시 하수관로 수위 현황 자료를 활용하여 매개변수 조정을 실시하였으며, 하수관로의 실측 수위와 모의 수위를 일치시켰다. LSTM 신경망을 이용하여 격자별로 예측된 침수심 데이터를 시각화하여 침수흔적도와 비교하였다.

  • PDF

Hourly Rainfall Surface Prediction with Meteorological Radar Data (기상레이더 자료를 이용한 시우량곡면 예측)

  • 정재성;이재형
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.187-195
    • /
    • 1996
  • In this study, a methodology for the hourly prediction of rainfall surfaces was applied to the Pyungchang river basin at the upstream of South Han river with meteorological radar and ground rainfall data. The methods for the exclusion of abnormal echoes, and suppression of ground clutter, and the augmentation of attenuation effects associated with rainfall phenomena were reviewed, and the relationship between radar reflectivity (Z) and rainfall rate (R) was analyzed. The transformation of augmented radar reflectivities into the rdar rainfall surfaces was carried out, and afterward they were synthesized with the ground rainfall data generating the hourly rainfall surfaces. For the prediction of hourly rainfall surface, the moving factors of rainfall field estimated by the cross correlation coefficient method and the temporal variation of radar rainfall intensities were considered. The synthesized hourly rainfall surfaces were used to predict the hourly rainfall surfaces up to 3 hours in advance and subsequently the results were compared with the measured and the synthesized. It seems that the prediction method need to be verified with more data and be complemented further to consider the physical characteristics of rainfall field and the topography of the basin.

  • PDF

Analysis of Flood Risk Area with Consideration of Heavy Rainfall Scenario and Uncertainty (극한강우 시나리오와 불확실도를 고려한 침수위험지역 분석)

  • Kim, Hyun Il;Han, Kun Yeun;Keum, Ho Jun;Lee, Jae Young;Kim, Beom Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.33-33
    • /
    • 2019
  • 최근 반복적인 도시침수 피해가 발생하고 있으나 다양한 강우 및 홍수 자료를 이용하여 실시간으로 침수분석을 실시할 수 있는 기술력이 부재한 실정이다. 한정된 시나리오에 따라 다양한 강우패턴에 의한 침수지역 파악에 어려움이 있으며, 불필요한 자료의 사용으로 인해 짧은 시간에 발생하는 도시침수에 대해 실시간으로 대응하는 데에 한계가 있다. 본 연구에서는 다양한 강우패턴과 극치강우 사상을 반영하기 위한 강우시간 분포법을 나타내고자 하였으며, 강우-유출 자료에 대한 최적의 자료조합을 선정하는 정량적 기준을 제시하고자 하였다. 지역 특성에 따른 극치강우사상의 시간분포에 대한 연구가 다양하게 진행되어 왔지만, 기존의 강우시간분포는 다양한 강우의 집중현상을 나타내기에는 한계가 있음을 보였다. 따라서 본 연구에서는 기존 강우시간분포 기법의 단점을 보완하고 극치강우사상의 집중지속시간 특성을 반영한 강우시간분포 방법과 Huff에 의한 강우시간 분포법을 사용하여 다양한 강우시나리오를 생성하였다. 본 연구에서는 부산 및 울산 연구대상지역의 도시유출해석의 입력 자료로서 사용하였다. 강우 및 유출 자료의 상관성 분석과 불확실도 분석을 기반으로 추후 홍수예측을 위한 최적의 입력 자료를 선정하고자 하였다. 위의 과정들을 통해 다양한 강우조건에 따른 연구대상 지역에서의 침수예상도를 분석할 수 있었으며, 선정된 극치강우사상을 통해 다양한 강우의 집중현상을 나타낼 수 있었다. 1차원 도시유출해석을 실시하여 구축한 강우-유출 데이터베이스의 최적화를 위해 불확실도 분석을 실시하였으며, 수리학적 특성이 고려된 입력 및 출력자료에 대한 사용자의 합리적인 판단을 위해 정량적 기준을 제시하고자 하였다. 더욱이 제시된 방법론을 이용함에 따라 지속적으로 나타나는 국지성 호우와 급변하는 수재해 양상에 능동적으로 대처하는데 도움을 줄 수 있는 기초자료를 제공할 것으로 판단된다.

  • PDF

Development and Evaluation of Flood Prediction Models Using Artificial Intelligence Techniques (인공지능 기법을 활용한 홍수예측모델 개발 및 평가 - 한강수계 댐을 중심으로 -)

  • Cho, Hemie;Uranchimeg, Sumiya;Yoo, Je-Ho;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.131-131
    • /
    • 2022
  • 기후변화의 영향으로 극치강우의 변동성이 커지고 있으며 계획빈도를 초과하는 폭우로 피해가 증가하고 있다. 기존의 물리기반의 홍수예측모델은 개념적 및 구조적 제약과 함께 다양한 유역조건 및 수문기상 조건에 기인한 강우-유출 관계의 불확실성을 고려하는 데 한계가 있다. 특히 한정된 홍수 사상을 통해 구축된 관측 자료로 인해 새로운 홍수 사상 예측 능력이 저조할 수밖에 없다. 따라서 기존 물리모형 기반의 홍수예측과 함께, 딥러닝(deep learning) 모형을 고려한 홍수예측 모델 개발과 개선이 필요하다. 본 연구에서는 다양한 분야에서 활용되는 인공지능(artificial intelligence, AI) 기술을 종합적으로 검토하고, 홍수 예측 측면에서의 활용 가능성 및 신뢰성을 고려하여 AI 기법을 채택하였다. 한강수계에 존재하는 댐 중 일부를 선정하여 대상 댐의 수문·기상학적 자료를 전처리한 후, 인공지능 기반의 홍수예측모형을 구축 및 최적화하였다. 다양한 예측인자와 모델 구성으로 홍수예측력에 대한 평가를 다각적으로 수행함으로써 홍수예측모델의 신뢰성을 제고하였다. 전반적으로 우수한 결과를 도출하였고, 유역면적이 작을수록 결과가 좋았다. 이는 넓은 유역일수록 복잡한 강우-유출 과정이 내재되어 있기 때문으로 판단되며, 넓은 유역에는 본 연구에서 활용한 자료에 추가적인 자료를 도입하여 모형 개선이 이루어져야 할 것으로 판단하였다. 수문 예측 연구에 통계모형이나 기계학습모형의 적용은 많이 있었지만, 딥러닝 기법 활용은 새로운 시도라는 점에서 의미가 있다.

  • PDF