• Title/Summary/Keyword: 예보 모델

Search Result 334, Processing Time 0.032 seconds

Role of the prediction skill of near-surface temperature in seasonal forecasting: A case study of U.S. droughts (근지표면 온도 예측성이 계절적 예보에 미치는 영향: 미국 가뭄의 사례연구)

  • Kam, Jonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.73-73
    • /
    • 2021
  • 가뭄의 계절적 예측성을 개선하기 위해서는 대기-지면-해양의 상호 작용이 현실적으로 모의할 수 있는 지구 기후 예보 모델의 개선이 필수적이다. 제한적인 기후 예보 모델의 예측성으로 인하여 다중 기후 모델들의 다중 앙상블 계절 예보 시스템이 제안되었다. 2008년에 제안된 북미 다중 모델 다중 앙상블 시스템(North American Multimodel Multiensemble System; NMME)은 다양한 모델 개발팀의 참여로 현재까지 운영되면서 계절적 예측성 연구에 큰 이바지를 하였다. 본 연구에서는 NMME 프로젝트에 참여하는 기후 예보 모델들의 북방 여름철 근지표면 온도과 강우량의 예측성을 진단하고 이들의 상관 관계의 강도를 관측데이터와 비교 분석하였다. 대부분의 NMME 모델들에서는 관측데이터에서 보다 강한 음의 상관 관계를 보였다. 이런 근지표면 온도와 강우량의 강한 상관 관계로 우수한 근지 표면 온도 예보는 각각의 해마다 그 역할이 다른 것을 발견되었다. 예를 들어 가문 여름에는 우수한 근지표면 온도 예보가 강우량 예보에 도움이 되고 강우량이 많은 여름에는 우수한 근지표면 온도 예보는 오히려 강우량 예측성을 제한하게 된다. 따라서 기존의 기후 예보 모델들에서 근지표면 온도와 강우량의 상관관계를 사실적으로 나타낼 수 있도록 모델 개선이 요구된다. 마지막으로 관측데이터와 기후 모델데이터에서 태평양과 대서양의 해수면 온도와 미국의 북방 여름철 날씨의 관계를 비교하였다. 근지표면 온도과 강우량에 대한 제한적 예측성에 비해, 대부분의 NMME 기후 예보 모델들에서 해수면 온도의 예측기술은 우수함을 발견하였고 몇몇 모델들에서는 미국의 북방 여름철 기후에 영향력을 주는 대서양과 태평양의 지역까지 잘 모사하는 것을 발견하였다. 따라서 본 연구는 보다 우수한 기후 예보 기술을 위해 앙상블 평균 예보값만이 아닌 NMME의 계절적 예보를 선택적인 사용이 필요함을 제안하였고 앞으로 북미 대륙 뿐만이 아니라 유럽-아시아의 계절적 이상 기후 예측성에 대한 연구 필요성을 강조하였다.

  • PDF

Assessing Forecast Accuracy of the UM numerical weather model for the Hydrological Application (수문학적 목적의 UM 수치예보자료의 예측정확성 평가)

  • Uranchimeg, Sumiya;Kwon, Hyun-Han;Kim, Kyung-Wook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.233-233
    • /
    • 2017
  • 현재의 기술과 전문가들의 지식을 바탕으로 수치 예보 모델의 해상도가 점차 증가하고 있으나 한편으로는 해상도가 높아질수록 신뢰성 있는 장기 예보를 제공하는데 어려움이 있다. 즉, 고해상도 모델의 경우 미세한 오차가 발생 하더라도, 실제 기상학적 관점에서 시공간적으로 변동성이 크게 발생할 개연성이 크며, 이로 인해 모델에서 발생하는 불확실성은 더욱 커질 수 있다. 한국 기상청(KMA)에서는 영국기상청으로부터 도입한 통합모델(UM)을 현업 운영하고 있다. 본 연구에서 기상청 통합모델인 UM3.0 예보모델의 예측정확성을 다양한 관점에서 평가하고자 한다. 기상청 UM3.0 모델은 3km의 공간해상도와 1시간 시간해상도를 가지며, 예보시작시점기준 7일간의 예보정보를 제공한다. 강수량 예측정보의 활용성을 평가하기 위해서 예측 시계열에 대해 RMSE, 편의 및 등 다양한 통계지표와 공간적인 강수량 발생 특성을 평가하기 위해서 FSS 방법을 적용하였다. 본 연구 결과를 통해 UM3.0 모델의 1시간 및 3km의 시공간해상도와 선행예보 기간을 그대로 수문학적으로 활용하는 데에는 다소 무리가 있는 것으로 평가되었으며, 이러한 점에서 수문학적 활용관점에서 최적의 시공간적 규모와 선행예보 시간을 분석하였다.

  • PDF

Real-time blending method development of radar-based QPF and numerical weather prediction models for hydrological application (수문학적 활용을 위한 레이더와 수치예보모델 예측강우의 실시간 병합 기법 개발)

  • Yoon, Seong-Sim;Lee, Dong-Ryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.99-99
    • /
    • 2018
  • 기상이변으로 인해 국지성 호우의 발생 증가와 그로 인한 수재해 피해가 증가하고 있다. 따라서 수재해를 사전에 예측하고 저감하기 위해 비구조물적 대책인 실시간 홍수예보시스템 개발 및 운영에 관한 연구들이 수행되고 있다. 일반적으로 홍수예보시스템은 대피선행시간 확보를 위해서 초단시간 혹은 단기 수치예보모델을 수문해석모형이나 예보기법의 입력으로 활용하고 있다. 초단시간 예측은 기상레이더를 기반으로 외삽, 이류, 셀 추적 등의 기법을 활용하여 0~3시간 이내의 강수예측을 수행한다. 그러나 역학이나 물리적 과정이 동반되지 못하여 0~ 2시간 이내에서의 예측성은 높은 반면, 예측시간이 길어질수록 예측력이 낮아진다. 단기수치예보모델은 종관관측에 의존하면서 역학이나 물리과정을 동반하므로 0~6시간 혹은 12시간 이상의 예측을 수행하지만, 수치모델의 고유특성인 스핀업 등의 예측 불확실성이 내재되어 있어 예측 초기시간에서의 예측력이 낮은 한계가 있다. 따라서 강수예측의 정확도 향상을 위해 레이더와 수치예보모델의 병합기법이 필요하다. 본 연구에서는 통계분석을 통해 경험적으로 산출된 시간적 가중치를 이용한 기존 병합기법의 한계를 극복하면서 호우에 따른 가변성을 반영하는 실시간 병합기법을 개발하고, 수문학적인 활용성을 평가하고자 하였다. 사용된 예측강우 자료는 레이더 기반인 MAPLE, KONOS, 공간규모분할 예측강우와 수치예보모델 기반인 UM와 ASAPS의 예측강우이며, 제시한 가중치 산정기법은 직전 예측강우의 오차가 현 시점의 예측강우의 오차와 유사하다는 가정하에 오차항을 포함한 과거 1시간 예측강우들간의 가중치 조합이 과거 지상관측강우와의 평균제곱근오차가 최소가 되도록 화음 탐색법을 이용하여 찾는 것이다. 가중치 조합은 예측강우의 생산 시간 간격을 고려하여 매 10분마다 산정하며, 미래 3시간 예측까지 산정된 가중치를 적용한다. 수도권 영역을 대상으로 병합된 예측강우와 레이더 관측강우를 비교한 결과, 정량적 정확도가 향상됨을 확인할 수 있었다. 또한, 예측강우의 수문학적 활용성은 도시유출해석모의를 통해 평가하였다. 그 결과, 병합된 예측강우로 모의된 수심이 관측수심과 유사하여 수문학적 활용성 확인할 수 있었다.

  • PDF

Evaluation of the predictive performance for monthly precipitation of a deep learning model for drought forecasting (가뭄 예보를 위한 딥러닝 모델의 월 강수량 예측 성능 평가)

  • Won, Jeongeun;Choi, Jeonghyeon;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.304-304
    • /
    • 2022
  • 가뭄은 인간 활동과 생태계의 다양한 측면에 영향을 미치는 중요한 자연재해 중 하나이다. 가뭄을 사전에 예측하여 필요한 완화 조치를 취하고 환경적 피해를 줄이는 것이 중요하다. 이에 따라 다양한 인공지능 기술을 이용한 가뭄 예측은 수문학, 수자원 관리, 농업 등의 분야에서 중요성이 커지고 있다. 최근에는 딥러닝 알고리즘을 기반으로 하는 중장기 강수예보를 위한 다양한 방법이 제시되고 있다. 이 논문의 목적은 가뭄 예보를 목적으로 월 강수량 예측을 위한 딥러닝 모델의 성능을 평가하는 것이다. 이를 위해 딥러닝 모델인 LSTM(Long Short-Term Memory)을 적용하였으며, 1981-2020년 기간의 월 강수 자료가 모델을 구축하기 위해 사용되었다. 관측자료를 기반으로 학습된 모델을 이용하여 테스트 기간에 대해 월 강수량을 예측하였다. 예측된 강수량을 통해 표준강수지수(Standardized Precipitation Index, SPI)을 산정하고, 예측 정확도를 분석하였다. 이 연구는 가뭄 예보를 위한 딥러닝 모델의 적용 가능성을 보여준다.

  • PDF

A Study on the Applicability of the Short-term Rainfall Forecasting using Translation Model (이류모델을 활용한 초단시간 강수예보의 적용성 검토)

  • Yoon, Seong-Sim;Lee, Jong-Dae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.193-197
    • /
    • 2009
  • 오늘날 도시지역의 무분별한 개발로 인해 불투수면적이 증가하여 첨두유량 및 유출용적의 증가와 홍수도달시간을 단축시키고 있으며, 특히 도시유역에서는 하천 홍수위 상승에 의한 외수피해와 순간적인 집중호우에 의해 도로 노면수의 배수불량에서 기인하는 내수피해가 결합되어 홍수피해가 더욱 가중되고 있는 실정이다. 이에 대한 효율적인 조기 대응책으로 도시 수문기상 현상의 변화 및 현황을 파악하여 홍수로 인한 인명 및 재산피해를 최소화할 수 있는 적절한 홍수 예 경보 시스템의 구축을 들 수 있다. 이를 위하여 선진 외국의 경우 기상전문가에 의한 집중호우 현상규명 및 사전예보 기법 확립과 수자원 전문가에 의한 이들 예보자료를 활용한 특정지역의 홍수피해 유무를 사전에 예측하는 기상과 수자원의 학제간 연구가 활발히 진행되고 있다. 국내의 경우 기상 현업에서는 국지성 집중호우 예측과 단시간 강수예보를 위해 수치예보모형, 레이더 및 기상위성을 활용하고 있으나 수자원 분야에서는 예측강우를 활용한 홍수예보에 관한 연구는 매우 미진한 상태이다. 특히 도시홍수의 경우 도달시간이 매우 짧으므로 강수의 초단시간 예보기법을 통한 강수예보의 선행시간 확보는 매우 중요하다. 이를 위해 본 연구에서는 기상레이더 정보와 이류모델을 활용한 초단시간 강수예보의 적용성을 검토하였다. 이류모델은 강우강도 분포를 이류벡터에 따라 이동시키면서 강우의 발달쇠약 회전 등을 고려하여 강수를 예측하는 모형이다. 본 연구에서는 초단시간 강수예보의 적용성 검토를 위해 Least-square fitting 기법으로 레이더 강수를 추정하고, 추정된 강수를 이류모델의 입력장으로 활용하였다. 또한, 도시홍수예보의 활용을 위해 중랑천 유역을 대상으로 초단시간 예측강수의 유역면적평균강우량을 산정하여 적용성을 평가하였다.

  • PDF

Generation and assessment of drought outlook information using long-term weather forecast data (장기예보자료를 활용한 가뭄전망정보 생산 및 평가)

  • So, Jae Min;Son, Kyung Hwan;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.97-97
    • /
    • 2016
  • 가뭄은 홍수와 더불어 매우 심각한 자연재해이며, 그 특성상 광역적이고 장기간 발생함에 따라 구체적인 발생시점, 규모, 범위 등을 규명하기가 어렵다. 다만, 적시에 경보해야 하는 홍수와 달리 진행속도가 느리고 시간적으로 대처할 여유가 있어 진행중 일지라도 초기에 감지한다면 그 피해를 최소화할 수 있다. 미국 등 수문기상 선진국에서는 수문기상 장기예보자료를 활용한 가뭄전망정보 생산 및 제공하고 있으며, 활용성을 검증한바 있다. 국내의 경우 기상청에서는 대기-해양-해빙 모델을 접합한 GloSea5 (Global Seasonal forecasting system version 5) 모델을 도입하였으며, 가뭄예보를 목적으로 장기예보자료 기반의 가뭄전망정보 생산체계를 구축한 바 있다(기상청, 2012; 손경환 등, 2015). 본 연구에서는 장기예보자료 기반의 수문기상 전망정보를 이용하여 2014-15년 가뭄사례에 대한 가뭄감시 및 전망정보를 생산 및 평가하였다. 수문기상전망 정보는 기상청 현업예보 모델인 GloSea5와 지면모델을 이용하여 생산하였으며, 관측자료와 수문전망정보 기반의 가뭄지수를 산정하였다. 매스컴 및 언론 보도 자료부터 2014-15년 가뭄에 대한 행정구역별 피해사례를 수집하였으며, 이를 기반으로 시계열, 지역별 및 통계적(CC, RMSE) 분석을 이용하여 선행시간별 정확도를 평가하였다. 1개월 및 2개월 전망정보의 정확도가 높음을 확인하였으며, 가뭄심도가 심각한 시기의 가뭄상황을 적절히 재현하는 것으로 나타났다.

  • PDF

Accuracy Comparison of Time Scale Conversion Method of RDAPS(Regional Date Assimilation and Prediction System) Outputs (RDAPS(Regional Date Assimilation and Prediction System) 예측 자료의 시간 Scale 변환에 따른 정확도 비교)

  • Jeong, Chang-Sam;Shin, Ju-Young;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.269-273
    • /
    • 2008
  • 기상청(KMA, Korea Meteorological Administration)에서는 기상수치예보모델을 적용하여 수치예보를 하고 있으며 전지구 모델로는 GDAPS(Global Date Assimilation and Prediction System)를 지역모델은 RDAPS(Regional Date Assimilation and Prediction System)를 사용하고 있다. 수치예보결과를 이용하여 유출량을 예측할 경우 일반적으로 해상도가 높은 지역모델인 RDAPS의 수치예보 결과값을 사용한다. RDAPS는 00UTC와 12UTC에 3시간으로 누적된 자료를 30km 격자에 대하여 예측시간으로부터 48시간에 대하여 자료를 생성한다. 일강우자료를 입력자료로 사용하는 강우-유출 모형의 경우 3시간 누적 자료를 나타나는 RDAPS 수치예보 결과를 이용 시 3시간 scale에서 일(day)시간 scale로 변환시켜주어야 한다. 본 연구에서는 RDAPS의 수치예보 결과의 일(day)시간 scale 변환 방법에 따른 정확도를 비교하여 RDAPS 수치예보 결과의 일(day)시간 scale 변환에 대한 정확도를 비교하여 일(day)시간 scale 변환에 대한 지침을 제공하고자 한다. RDAPS 수치예보 결과값의 특징을 이용하여 RDAPS 결과값을 일(day)시간 scale로 변환하는 방법으로 총 9개방법을 적용하였으며, 참 값으로는 기상청 강수자료를 사용하였으며, 금강유역을 대상으로 유역평균강수량을 계산하여 각 변환 방법에 따른 정확도를 비교하였다.

  • PDF

Assessment of Flood Forecasting using Numerical Weather Prediction Data of Meso-Scale Model (메소스케일모델의 수치예보자료를 이용한 홍수예측 평가)

  • Moon, Hye Jin;Yu, Wan Sik;Jung, Kwan Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.134-134
    • /
    • 2017
  • 전 세계적으로 지구온난화로 인한 기후변화에 의해 다우지역의 집중호우 빈도 및 강도가 증가하여 치수 구조물의 설계 홍수 빈도를 초과하는 홍수 피해가 발생하고 있다. 이러한 피해를 경감하기 위한 홍수 예 경보의 선행시간 확보에는 정확한 강우 및 홍수예측이 필수적이다. 하지만 기존의 홍수예측 시스템은 관측 강우를 수문모형의 입력 자료로 사용하여 홍수 유출량을 계산하게 되는데, 태풍 및 국지성 집중호우 등과 같은 기상조건에서는 관측강우를 이용하여 홍수 예 경보 시스템을 운영할 경우 선행시간 확보의 어려움으로 인해 방재 효율성이 감소하게 된다. 이에 예측유량의 선행시간을 확보하기 위해서 정확한 강우예측이 선행되어야하며, 이를 위해서는 기상과 수자원 분야의 연계를 통한 홍수 예 경보 시스템 구축이 하나의 대안으로 대두되고 있다. 따라서 본 연구에서는 최근 기후 변화로 인한 국내의 홍수기 강우의 시 공간적 집중 현상으로 인한 호우 피해와 관련하여 신속하고 정확도 높은 홍수 예보의 중요성을 인지하고, 이에 대해 단기간 수치기상예보 자료를 활용하여 국내에 그 적용성을 평가하였다. 수치예보자료는 일본 기상청의 수치기상예보 모델인 중규모 모델(Meso-Scale Model, MSM)을 이용하였으며, 수문 모형은 강우-유출-범람모델(Rainfall-Runoff-Inundation, RRI)을 사용하였다. 대전광역시의 도심지를 통과하는 갑천유역을 대상 유역으로 하였으며, 홍수경보가 발생했던 강우 사상에 대해 강우 및 홍수 예측 정확도를 평가하였다.

  • PDF

Analysis of Forecast Performance by Altered Conventional Observation Set (종관 관측 자료 변화에 따른 예보 성능 분석)

  • Han, Hyun-Jun;Kwon, In-Hyuk;Kang, Jeon-Ho;Chun, Hyoung-Wook;Lee, Sihye;Lim, Sujeong;Kim, Taehun
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.21-39
    • /
    • 2019
  • The conventional observations of the Korea Meteorological Administration (KMA) and National Centers for Environmental Prediction (NCEP) are compared in the numerical weather forecast system at the Korea Institute of Atmospheric Prediction Systems (KIAPS). The weather forecasting system used in this study is consists of Korea Integrated Model (KIM) as a global numerical weather prediction model, three-dimensional variational method as a data assimilation system, and KIAPS Package for Observation Processing (KPOP) as an observation pre-processing system. As a result, the forecast performance of NCEP observation was better while the number of observation is similar to the KMA observation. In addition, the sensitivity of forecast performance was investigated for each SONDE, SURFACE and AIRCRAFT observations. The differences in AIRCRAFT observation were not sensitive to forecast, but the use of NCEP SONDE and SURFACE observations have shown better forecast performance. It is found that the NCEP observations have more wind observations of the SONDE in the upper atmosphere and more surface pressure observations of the SURFACE in the ocean. The results suggest that evenly distributed observations can lead to improved forecast performance.

ANALYSIS ON GPS PWV EFFECTS AS AN INITIAL INPUT DATA OF NWP MODEL (수치예보모델 초기치로서 GPS 가강수량 영향 분석)

  • Lee, Jae-Won;Cho, Jung-Ho;Baek, Jeong-Ho;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.285-296
    • /
    • 2007
  • The Precipitable Water Vapor (PWV) from GPS with high resolution in terms of time and space might reduce the limitations of the numerical weather prediction (NWP) model for easily variable phenomena, such as precipitation and cloud. We have converted to PWV from Global Positioning System (GPS) data of Korea Astronomy and Space Science Institute (KASI) and Ministry of Maritime Affairs & Fisheries (MOMAF). First of all, we have selected the heavy rainfall case of having a predictability limitation in time and space due to small-scale motion. In order to evaluate the effect for GPS PWV, we have executed the sensitivity experiment with PWV from GPS data over Korean peninsula in the Weather Research & Forecasting 3-Dimensional Variational (WRF-3DVAR). We have also suggested the direction of further research for an improvement of the predictability of NWP model on the basis of this case.