• Title/Summary/Keyword: 영 전단률 점성계수

Search Result 1, Processing Time 0.016 seconds

An experimental study on the characteristic times of viscoelastic fluids by falling ball viscometer (낙구식 점도계를 이용한 점탄성 유체의 특성시간에 관한 실험적 연구)

  • 전찬열;유상신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.241-250
    • /
    • 1990
  • Characteristic relaxation time and characteristic diffusion time of viscoelastic fluids are determined experimentally by measuring the zero-shear-rate viscosity by falling ball viscometer and the infinite-shear-rate viscosity by capillary tube viscometer. Fluids used in experiments are aqueous solutions of polyacrylamide Separan AP-273 and the polymer concentrations range from 300 to 2000 wppm. A newly designed laser beam and timer system is employed to overcome the difficulty in measuring terminal velocities of the low concentration solutions. Ball removal device is prepared to remove the dropped ball from the bottom of cylinder without disturbing the testing fluid. In order to measure the zero-shear-rate viscosity, densities of hollow aluminium balls are adjusted very close to the densities of testing fluids. Characteristic diffusion time, which is ball viscometer. However, terminal velocity of a needle by falling ball viscometer is not affected by the time interval of dropping needles and characteristic diffusion time is not measured with a dropping needle. Powell-Eyring model predicts the highest values of the characteristic relaxation times among models used for heat transfer experimental works for a given polymer solution. As degradation of a polymer solution continues, the zero-shear-rate viscosity decreases more seriously than the infinite-shear-rate viscosity. Characteristic relaxation times of polymer solutions decreases as degradation continues.