• Title/Summary/Keyword: 영역 레이블링

Search Result 87, Processing Time 0.034 seconds

A Depth Creation Method Using Frequency Based Focus/Defocus Analysis In Image (영상에서 주파수 기반의 초점/비초점 분석을 이용한 깊이 지도 생성 기법)

  • Lee, Seung Kap;Park, Young Soo;Lee, Sang Hun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.309-316
    • /
    • 2014
  • In this paper, we propose an efficient detph map creation method using Graph Cut and Discrete Wavelet Transform. First, we have segmented the original image by using Graph Cut to process with its each areas. After that, the information which describes segmented areas of original image have been created by proposed labeling method for segmented areas. And then, we have created four subbands which contain the original image's frequency information. Finally, the depth map have been created by frequency map which made with HH, HL subbands and depth information calculation along the each segmented areas. The proposed method can perform efficient depth map creation process because of dynamic allocation using depth information. We also have tested the proposed method using PSNR(Peak Signal to Noise Ratio) method to evaluate ours.

Hand Region Feature Point Extraction Using Vision (비젼을 이용한 손 영역 특징점 추출)

  • Jeong, Hyun-Suk;Oh, Myung-Jea;Joon, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1798_1799
    • /
    • 2009
  • 본 논문에서는 강인한 손 영역 특징 점 추출 방법을 제안한다. 제안하는 방법은 HCbCr 칼라 모델을 생성한 후 퍼지 색상 필터에 적용하여 손 후보 영역을 추출한다. 최종적으로 손 영역을 추출하기 위해서 레이블링 기법을 사용한다. 그 후, 추출된 손 영역의 실루엣을 추출하고 히스토그램 기법을 적용하여 손 영역 내의 COG를 추출 한다. 손 영역 특징 점 추출을 위해 Canny edge 기법과 Chain Code기법, DP(Douglas-Peucker)기법들을 이용하여 전처리 과정을 거쳐 1차 특징점을 추출한다. 추출된 1차 특징 점을 Convex Hull기법에 적용하여 최종적인 손 영역 특징 점을 추출한다. 마지막으로, 복잡하고 다양한 실내 환경에서의 실험을 통해 그 응용 가능성을 증명한다.

  • PDF

Brain Segmentation on CT Angiography with Slice Information (CT 혈관조영영상에서 슬라이스 정보를 이용한 뇌 분할)

  • Lee, Byeong-Hun;Lee, Ho;Hong, Helen
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.904-906
    • /
    • 2005
  • 본 논문에서는 뇌 CT 혈관조영영상에서 슬라이스 정보를 이용한 뇌 분할 방법을 제안한다. 뇌 분할 과정은 현재 슬라이스와 이전 슬라이스 간 분할 영역의 크기 정보를 가지고 영역 성장 단계와 전파 단계로 구분하여 수행된다. 영역 성장 단계에서는 이차원 영역성장법을 통해 뇌 분할을 수행하고 누출이 발생하는 슬라이스에 대하여 방사선 투과 기법을 통해 영역보정을 수행한다. 전파 단계에서는 이전 슬라이스에서 분할된 뇌 영역을 현재 슬라이스로 전파함으로써 장벽을 생성하고 장벽 내에서 이차원 영역성장법을 수행함으로써 누출을 최소화한다. 또한 뇌 영역과 유사한 밝기값을 형성하고 있는 미세 요소들을 제거하기 위해 이차원 연결화소군 레이블링 기법을 통해서 최종적으로 뇌 분할을 수행한다. 본 논문의 실험을 위하여 뇌 CT 혈관조영영상을 사용하여 정확한 뇌분할 결과를 얻었다.

  • PDF

A Study on a Face Detection Using Color Information and Gabor Filter (칼라 정보를 이용한 얼굴 영역 검출 및 Gabor Filter 에 의한 영역 검증에 관한 연구)

  • 한재성;이경무
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.861-864
    • /
    • 2000
  • 본 논문에서는 물체의 고유 칼라 정보 복원을 통하여 조명의 영향을 받지 않는 칼라 기반 얼굴검출 기법을 제안한다. 즉 주위 조명 영향으로부터 RGB 성분 계수를 파악하여 조명 성분에 영향을 받은 성분을 상쇄시키고, 색포화도와 밝기값 보상을 통해 고유 칼라를 복원(color recover)하는 실험을 하였고, 복원된 영상을 YCbCr 좌표계로 변환시킨 후, CbCr 각각에 대해 살색 성분이 나타내는 일정한 범위내의 부분을 검출하였다. 또한 이 진화 과정에서 생긴 잡음들을 형태학적인 모폴로지 필터를 통해 제거하였으며, 살색 후보 영역 중 같은 영역들은 레이블링하여 얼굴 후보 영역을 생성하였다. 그러나 칼라 정보만으로는 검출된 영역이 얼굴인지를 판단하기가 매우 어렵다. 그러므로 본 연구에서는 인간시각에 기반한 Gabor 필터를 사용하여, 검출된 살색 영역이 최종적으로 얼굴인지를 판별하는 효율적인 알고리즘을 제안한다.

  • PDF

Input Device of Non Touch Screen Using Hand Region Skeleton Model (손 영역 스켈레톤 모델을 이용한 비접촉 스크린 입력 장치)

  • Seo, Hyo-Dong;Kim, Hyo-Jin;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1906-1907
    • /
    • 2011
  • 본 논문에서는 손 영역 스켈레톤 모델을 이용한 비접촉식 스크린 입력 장치를 제안한다. 제안하는 방법은 HCbCr 컬러 모델을 생성한 후 손 후보 영역을 추출하고, 손 영역을 추출하기 위해 레이블링 기법을 사용한다. 손 이외의 피부를 제거하기 위해 손 크기 이하의 객체는 필터링을 거친 후 최종적인 손 영역을 추출한다. 손 영역의 특징점은 무게 중심법과 굴곡 기법을 이용하여 추출한다. 특징점을 연결하여 손의 스켈레톤 모델을 생성하고 각 손가락에 터치 이벤트를 부여한다. 손가락의 구부러진 각도를 이용하여 터치 동작을 인식 및 실행하게 된다.

  • PDF

Automatic Mask Generation for 3D Makeup Simulation (3차원 메이크업 시뮬레이션을 위한 자동화된 마스크 생성)

  • Kim, Hyeon-Joong;Kim, Jeong-Sik;Choi, Soo-Mi
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.397-402
    • /
    • 2008
  • 본 논문에서는 햅틱 인터랙션 기반의 3차원 가상 얼굴 메이크업 시뮬레이션에서 메이크업 대상에 대한 정교한 페인팅을 적용하기 위한 자동화된 마스크 생성 방법을 개발한다. 본 연구에서는 메이크업 시뮬레이션 이전의 전처리 과정에서 마스크를 생성한다. 우선, 3차원 스캐너 장치로부터 사용자의 얼굴 텍스쳐 이미지와 3차원 기하 표면 모델을 획득한다. 획득된 얼굴 텍스쳐 이미지로부터 AdaBoost 알고리즘, Canny 경계선 검출 방법과 색 모델 변환 방법 등의 영상처리 알고리즘들을 적용하여 마스크 대상이 되는 주요 특정 영역(눈, 입술)들을 결정하고 얼굴 이미지로부터 2차원 마스크 영역을 결정한다. 이렇게 생성된 마스크 영역 이미지는 3차원 표면 기하 모델에 투영되어 최종적인 3차원 특징 영역의 마스크를 레이블링하는데 사용된다. 이러한 전처리 과정을 통하여 결정된 마스크는 햅틱 장치와 스테레오 디스플레이기반의 가상 인터페이스를 통해서 자연스러운 메이크업 시뮬레이션을 수행하는데 사용된다. 본 연구에서 개발한 방법은 사용자에게 전처리 과정에서의 어떠한 개입 없이 자동적으로 메이크업 대상이 되는 마스크 영역을 결정하여 정교하고 손쉬운 메이크업 페인팅 인터페이스를 제공한다.

  • PDF

Implementation of Clustered Microcalcification Computer Aided Detection System in Mammograms (맘모그램 영상에서의 군집화된 미세석회질 컴퓨터 보조 검출 시스템 구현)

  • Lee, Jung-Chel;Om, Kyong-Sik;Lee, Hyung-Ji;Park, Sang-Keun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.1-5
    • /
    • 2006
  • 본 논문에서는 유방암의 조기발견에 있어서 중요한 소견중 하나인 군집화된 미세석회질을 유방촬영 영상으로부터 자동으로 분석 및 검출하는 컴퓨터 보조 검출 시스템을 구현하였다. 전처리단계로서 유방영상에 메디안 필터를 사용하여 잡음을 제거하고, 히스토그램과 레이블링 연산을 수행하여 실제 유방영역만을 추출 하는 작업을 구현하였다. 그런 후에 추출된 실제 유방영역에서 LoG (Laplacian of Gaussian)연산을 수행하고 히스토그램을 분석하여 이진화를 수행한후에 후보점을 검출하였다. 마지막으로 이를 이용하여 영역확장 알고리즘을 수행하여 미세석회질의 후보영역을 검출한 후, 미세석회질간의 거리를 분석하여 최종 관심영역을 추출하였다. 데이터베이스는 총 20개의 MIAS Mini Database의 맘모그램 영상을 사용하였으며 실험결과 89%라는 검출 성능을 얻을 수 있었다.

  • PDF

Real-time Face Tracking Using Multi Color Model and Face Gradient Correction Algorithm (다중 컬러 모델을 이용한 실시간 얼굴 추적 및 기울기 보정 알고리즘)

  • 석영수;이응주
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.488-491
    • /
    • 2003
  • 본 논문에서는 실시간 CCD 카메라 입력 영상으로부터 다중 컬러 정보를 이용하여 얼굴 영역을 검출 및 추적하고 기울어진 얼굴을 보정하는 알고리즘을 제안하였다. 제안한 알고리즘은 먼저 획득된 RGB 영상에서 YCbCr컬러 모델과 YIQ컬러 모델로 변환한 후 Cr성분과 I성분을 추출하여 얼굴 피부색을 검출, 얼굴 영역 추출에 사용하였다. 또한 추출된 얼굴 후보 영역에서 수평, 수직 투영(Projection)정보로부터 최종 얼굴 영역으로 검출한 다음 검출된 얼굴 중심 좌표와 이전에 검출된 얼굴 중심 좌표 값을 유클리드언 거리로 얼굴을 추적하였으며 검출된 얼굴로부터 레이블링(Labeling)기법으로 눈 특징자를 검출, 눈의 기울기 각도를 보정함으로써 얼굴 기울기를 보정하였다. 제안한 얼굴 추적 및 기울기 보정 알고리즘을 사용하여 실험한 결과 다중 색상 정보를 사용함으로써 주위환경 변화에 강인하게 실시간 얼굴 영역 김출 및 추적이 가능하였고, 기울어진 얼굴 영상을 자동 보정함으로써 인식에 용이하였다.

  • PDF

Caption Region Extraction of Sports Video Using Multiple Frame Merge (다중 프레임 병합을 이용한 스포츠 비디오 자막 영역 추출)

  • 강오형;황대훈;이양원
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.467-473
    • /
    • 2004
  • Caption in video plays an important role that delivers video content. Existing caption region extraction methods are difficult to extract caption region from background because they are sensitive to noise. This paper proposes the method to extract caption region in sports video using multiple frame merge and MBR(Minimum Bounding Rectangles). As preprocessing, adaptive threshold can be extracted using contrast stretching and Othu Method. Caption frame interval is extracted by multiple frame merge and caption region is efficiently extracted by median filtering, morphological dilation, region labeling, candidate character region filtering, and MBR extraction.

  • PDF

Smoke Detection using Region Growing Method (영역 확장법을 이용한 연기검출)

  • Kim, Dong-Keun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.271-280
    • /
    • 2009
  • In this paper, we propose a smoke detection method using region growing method in outdoor video sequences. Our proposed method is composed of three steps; the initial change area detection step, the boundary finding and expanding step, and the smoke classification step. In the first step, we use a background subtraction to detect changed areas in the current input frame against the background image. In difference images of the background subtraction, we calculate a binary image using a threshold value and apply morphology operations to the binary image to remove noises. In the second step, we find boundaries of the changed areas using labeling algorithm and expand the boundaries to their neighbors using the region growing algorithm. In the final step, ellipses of the boundaries are estimated using moments. We classify whether the boundary is smoke by using the temporal information.