• Title/Summary/Keyword: 영역 레이블링

Search Result 87, Processing Time 0.026 seconds

Code region extraction method using multiple thresholding for container BIC-code recognition (컨테이너 BIC-code 인식을 위한 다중 이진화를 이용한 code 영역 추출 방법)

  • Song, Jae-Wook;Jung, Na-Ra;Kang, Hyun-Soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.29-30
    • /
    • 2014
  • 본 논문에서는 컨테이너 BIC-code 자동인식 시스템의 전 처리 과정으로서 다중 임계값을 이용한 BIC-code 영역 추출 방법을 제안한다. 기후요소, 빛, 카메라 위치, 컨테이너의 색과 같은 다양한 요인으로 인해 고정된 임계값을 사용할 수 없다. 따라서 각 영상에 대해 다양한 임계값으로 실험하여 컨테이너 BIC-code 인식에 가장 우수한 임계값을 결정하여 영상을 이진화한다. 다음으로, 가장 우수한 임계값으로 이진화 한 영상에 대하여 레이블링, 닫힘 연산을 통해 BIC-code의 가로, 세로 여부를 판단하게 된다. 또한 레이블링 된 각 영역을 판단하여 잡음을 제거하고, 개별 code를 분리한다. 제안된 방법에 대한 실험결과 성공적인 코드 영역 분리가 가능함을 확인할 수 있었다.

  • PDF

A Study on Vehicle License Plate Segmentation using Iterative Labeling (반복레이블링기법을 이용한 통합차량번호판의 문자영역화에 관한 연구)

  • Koo Kyung-Mo;Jung Ho-Young;Yoon Hee-Ju;Cha Eui-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.923-926
    • /
    • 2004
  • 본 논문에서는 현재까지 도입된 세 가지 종류의 차량번호판의 구조적 특징을 파악하여 이를 구분하고, 반복레이블링기법을 이용하여 각각의 번호판에서 일련번호를 영역화하는 기법을 제안한다. 또한 차량번호판이 가지는 구조적인 특징을 이용하여 용도기호, 차종기초 및 지역명을 영역화하는 기법을 제안한다.

  • PDF

Prompt Tuning For Korean Aspect-Based Sentiment Analysis (프롬프트 튜닝기법을 적용한 한국어 속성기반 감정분석)

  • Bong-Su Kim;Hyun-Kyu Jeon;Seung-Ho Choi;Ji-Yoon Kim;Jung-Hoon Jang
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.50-55
    • /
    • 2023
  • 속성 기반 감정 분석은 텍스트 내에서 감정과 해당 감정이 특정 속성, 예를 들어 제품의 특성이나 서비스의 특징에 어떻게 연결되는지를 분석하는 태스크이다. 본 논문에서는 속성 기반 감정 분석 데이터를 사용한 다중 작업-토큰 레이블링 문제에 프롬프트 튜닝 기법을 적용하기 위한 포괄적인 방법론을 소개한다. 이러한 방법론에는 토큰 레이블링 문제를 시퀀스 레이블링 문제로 일반화하기 위한 감정 표현 영역 검출 파이프라인이 포함된다. 또한 분리된 시퀀스들을 속성과 감정에 대해 분류 하기 위한 템플릿을 선정하고, 데이터셋 특성에 맞는 레이블 워드를 확장하는 방법을 제안함으써 모델의 성능을 최적화한다. 최종적으로, 퓨샷 세팅에서의 속성 기반 감정 분석 태스크에 대한 몇 가지 실험 결과와 분석을 제공한다. 구축된 데이터와 베이스라인 모델은 AIHUB(www.aihub.or.kr)에 공개되어 있다.

  • PDF

A Study on Labeling for License Plate Recognition (자동차 번호판 인식을 위한 레이블링 기법 연구)

  • Park, Jong-Dae;Park, Chan-Hong;Park, Byeong-Ho;Seong, Hyeon-Kyeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.55-57
    • /
    • 2014
  • 본 논문에서는 자동차 번호판 인식을 위해 직선검출법, 모폴로지에 의한 검출법을 사용하지 않고, Blob 레이블링 기법을 이용한 번호판 인식 기법을 제안한다. 고성능 컴퓨팅 시스템의 성능 향상을 위한 효율적인 동적 작업부하 균등화 정책을 제안한다. ITS분야에서 가장 중요한 요소라 할 수 있는 자동차 번호판 인식은 자동화된 차량 관리 시스템 구성에 필수적인 요소로 요구된다. 또한, 자동차와 관련된 정보는 직, 간접적으로 높은 중요도를 가지고 있으며, 자동차와 관련된 정보가 이용되는 영역은 교통관리, 교통량분석, 자동 요금 징수 시스템, 자동차 위법 단속 등 응용범위가 나날이 넓어지고 있다. 본 논문에서는 자동차 번호판 인식을 위해 Blob 레이블링 기법을 이용하였으며, 번호판 인식을 위한 영상 샘플은 오츠알고리즘을 이용하여 이진화된 영상을 사용하였다.

  • PDF

The Color Polarity Method for Binarization of Text Region in Digital Video (디지털 비디오에서 문자 영역 이진화를 위한 색상 극화 기법)

  • Jeong, Jong-Myeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.9
    • /
    • pp.21-28
    • /
    • 2009
  • Color polarity classification is a process to determine whether the color of text is bright or dark and it is prerequisite task for text extraction. In this paper we propose a color polarity method to extract text region. Based on the observation for the text and background regions, the proposed method uses the ratios of sizes and standard deviations of bright and dark regions. At first, we employ Otsu's method for binarization for gray scale input region. The two largest segments among the bright and the dark regions are selected and the ratio of their sizes is defined as the first measure for color polarity classification. Again, we select the segments that have the smallest standard deviation of the distance from the center among two groups of regions and evaluate the ratio of their standard deviation as the second measure. We use these two ratio features to determine the text color polarity. The proposed method robustly classify color polarity of the text. which has shown by experimental result for the various font and size.

An Algorithm for Segmenting the License Plate Region of a Vehicle Using a Color Model (차량번호판 색상모델에 의한 번호판 영역분할 알고리즘)

  • Jun Young-Min;Cha Jeong-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.21-32
    • /
    • 2006
  • The license plate recognition (LPR) unit consists of the following core components: plate region segmentation, individual character extraction, and character recognition. Out of the above three components, accuracy in the performance of plate region segmentation determines the overall recognition rate of the LPR unit. This paper proposes an algorithm for segmenting the license plate region on the front or rear of a vehicle in a fast and accurate manner. In the case of the proposed algorithm images are captured on the spot where unmanned monitoring of illegal parking and stowage is performed with a variety of roadway environments taken into account. As a means of enhancing the segmentation performance of the on-the-spot-captured images of license plate regions, the proposed algorithm uses a mathematical model for license plate colors to convert color images into digital data. In addition, this algorithm uses Gaussian smoothing and double threshold to eliminate image noises, one-pass boundary tracing to do region labeling, and MBR to determine license plate region candidates and extract individual characters from the determined license plate region candidates, thereby segmenting the license plate region on the front or rear of a vehicle through a verification process. This study contributed to addressing the inability of conventional techniques to segment the license plate region on the front or rear of a vehicle where the frame of the license plate is damaged, through processing images in a real-time manner, thereby allowing for the practical application of the proposed algorithm.

Face Detection using Skin-tone Color Space Table (피부-색상 공간 테이블을 이용한 얼굴 검출)

  • 고경철;이양원
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.381-384
    • /
    • 2002
  • 본 논문에서는 실험 영상으로부터 학습된 피부색상 정보를 이용하여 컬러 공간테이블을 생성한 후. 입력된 영상의 컬러와 공간정보를 학습된 피부색상 공간테이블로부터 비교, 분석하여 얼굴후보영역을 찾고자 하였다. 또한 추출된 후보영역의 레이블된 특징정보를 이용하여 지역적 특징을 찾아낸 후 얼굴 특징점의 위치에 따른 형태정보를 이용하여 신뢰할 수 있는 얼굴 영역을 검출하고자 하였다. 제안된 피부색상(Skin-tone)공간테이블은 변환하기 쉽고 계산이 빠른 RGB컬러 공간에서 실험, 평가되었으며, 실시간으로 입력된 영상의 정규화된 책상 값을 유사성 정도에 따라 레이블링하여 보다 빠른 얼굴 후보 영역의 검출과 검증을 할 수 있도록 하였다.

  • PDF

Face Region Extraction for the Facial Expression Recognition System (얼굴 표정 인식 시스템을 위한 얼굴 영역 추출)

  • Lim Ju-Hyuk;Song Kun-Woen
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.903-906
    • /
    • 2004
  • 본 논문에서는 얼굴 표정 인식 시스템을 위한 얼굴 영역 추출 알고리즘을 제안한다. 이는 입력 영상으로부터 얼굴 후보 영역을 추출하고, 추출된 얼굴 후보 영역에서 눈의 위치를 정확히 추출한다. 그리고 추출된 눈 영역들의 정보와 타원 방정식을 이용하여 최종 얼굴 영역을 추출한다. 얼굴 후보 영역은 HSI 칼라 좌표계에 기반한 적응적 피부색 구간 범위를 설정하여 추출하였다. 추출된 얼굴 후보 영역에서의 눈 영역 추출을 위해 밝기 정보를 이용하여 먼저 눈의 후보 화소들을 추출하고, 레이블링 과정을 통하여 영역별로 그룹화하였다. 각 후보 영역들의 화소 수, 가로세로비 및 위치 정보를 고려하여 최종 눈 영역을 추출하였다. 추출된 두 눈 영역에서 무게중심을 구하고 이를 이용하여 장축과 단축을 설정하여 타원방정식을 이용 최종 얼굴 영역을 추출하였다. 제안된 알고리즘은 조명 변화, 다양한 배경들을 가지는 얼굴 영상에서도 정확히 얼굴 영역을 추출할 수 있었다.

  • PDF

An Auto-Labeling based Smart Image Annotation System (자동-레이블링 기반 영상 학습데이터 제작 시스템)

  • Lee, Ryong;Jang, Rae-young;Park, Min-woo;Lee, Gunwoo;Choi, Myung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.701-715
    • /
    • 2021
  • The drastic advance of recent deep learning technologies is heavily dependent on training datasets which are essential to train models by themselves with less human efforts. In comparison with the work to design deep learning models, preparing datasets is a long haul; at the moment, in the domain of vision intelligent, datasets are still being made by handwork requiring a lot of time and efforts, where workers need to directly make labels on each image usually with GUI-based labeling tools. In this paper, we overview the current status of vision datasets focusing on what datasets are being shared and how they are prepared with various labeling tools. Particularly, in order to relieve the repetitive and tiring labeling work, we present an interactive smart image annotating system with which the annotation work can be transformed from the direct human-only manual labeling to a correction-after-checking by means of a support of automatic labeling. In an experiment, we show that automatic labeling can greatly improve the productivity of datasets especially reducing time and efforts to specify regions of objects found in images. Finally, we discuss critical issues that we faced in the experiment to our annotation system and describe future work to raise the productivity of image datasets creation for accelerating AI technology.

Pulmonary Vessels Segmentation and Refinement On the Chest CT Images (흉부 CT 영상에서 폐 혈관 분할 및 정제)

  • Kim, Jung-Chul;Cho, Joon-Ho;Hwang, Hyung-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.188-194
    • /
    • 2013
  • In this paper, we proposed a new method for pulmonary vessels image segmentation and refinement from pulmonary image. Proposed method consist of following five steps. First, threshold estimation is performed by polynomial regression analysis of histogram variation rate of the pulmonary image. Second, segmentation of pulmonary vessels object is performed by density-based segmentation method based on estimated threshold in first step. Third, 2D connected component labeling method is applied to segmented pulmonary vessels. The seed point of both side diaphragms is determined by eccentricity and size of component. Fourth step is diaphragm extraction by 3D region growing method at the determined seed point. Finally, noise cancelation of pulmonary vessels image is performed by 3D connected component labeling method. The experimental result is showed accurately pulmonary vessels image segmentation, the diaphragm extraction and the noise cancelation of the pulmonary vessels image.