Together with machine-learning frameworks, area-based imagery registration techniques can be easily applied to diverse types of image pairs without predefined features and feature descriptors. However, feature detectors are often used to quickly identify candidate image patch pairs, limiting the applicability of these registration techniques. In this paper, we propose a ConvNet (Convolutional Network) "Dart" that provides not only the matching metric between patches, but also information about their distance, which are helpful in reducing the search space of the corresponding patch pairs. In addition, we propose a ConvNet "Fad" to identify the patches that are difficult for Dart to improve the accuracy of registration. These two networks were successfully implemented using Deep Learning with the help of a number of training instances generated from a few registered image pairs, and were successfully applied to solve a simple image registration problem, suggesting that this line of research is promising.
최근 대규모 지역 혹은 전 지구에 걸친 분석 및 모니터링을 위한 위성영상의 사용이 늘어나면서 이를 처리하기 위한 효율적인 '영상좌표 상호등록'법이 요구되고 있다. 이에 본 연구에서는 일반적으로 오랜 시간이 소요되는 '영상좌표 상호등록'의 효율성을 높이기 위해 '사전검수영역기반정합법'(Pre-qualified area based matching)을 사용하였다. 이를 통해 '영상좌표 상호등록'시 연산시간을 현저히 단축시켰고 추출된 정합점에 과대오차제거법을 적용함으로서 단순히 영역기반정합법을 적용한 경우에 비해서 정확도가 향상됨을 확인할 수 있었다. 제안한 알고리즘을 이용하여 테스트 프로그램을 작성, 한반도 Landsat ETM+ 영상 3장을 이용하여 테스트하였다. 정합점 간의 평균제곱오차는 0.436 영상소, 정합점은 평균 38,475개로 나타났다. 연산시 간은 평균 약 8분으로 나타났다.
Journal of the Korea Society of Computer and Information
/
v.11
no.2
s.40
/
pp.83-92
/
2006
This paper describes an image disparity estimation method using region-based stereo matching. Region-based disparity estimation yields a disparity map as the unit of segmented region. However it estimates disparity imprecisely because it not only has matching errors but also applies an identical way to disparity estimation, which does not consider each type of matched regions. To solve this problem, we proposes a disparity estimation method which considers the type of matched regions. That is, the proposed method classifies whole matched regions into a similar-matched region, a dissimilar-matched region, a false-matched region and a miss-matched region. We then performs proper disparity estimation for each type of matched regions. This method minimizes the error in estimating disparity which is caused by inaccurate matching and also improves the accuracy of disparity of the well-matched regions. The experimental results show the improved accuracy of the proposed method.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.30
no.2
/
pp.143-152
/
2012
It is well-known that image matching is necessary for automatic generation of 3D data such as digital surface data from aerial images. Recently developed aerial digital cameras allow to capture multi-strip images with higher overlaps and less occluded areas than conventional analogue cameras and that much of researches on multi-image matching have been performed, particularly effective methods of measuring a similarity among multi-images using point features as well as linear features. This research aims to investigate similarity measuring methods such as SSD and SNCC incorporated into a area based multi-image matching method based on vertical line locus. In doing this, different similarity measuring entities such as grey value, grey value gradient, and average of grey value and its gradient are implemented and analyzed. Further, both dynamic and pre-fixed adaptive-window size are tested and analyzed in their behaviors in measuring similarity among multi-images. The aerial images used in the experiments were taken by a DMC aerial frame camera in three strips. The over-lap and side-lap are about 80% and 60%, respectively. In the experiment, it was found that the SNCC as similarity measuring method, the average of grey value and its gradient as similarity measuring entity, and dynamic adaptive-window size can be best fit to measuring area-based similarity in area based multi-image matching method based on vertical line locus.
Journal of Korean Society for Geospatial Information Science
/
v.12
no.2
s.29
/
pp.61-66
/
2004
By the advent of the high-resolution Satellite imagery, there are increasing needs in image mosaicking technology which can be applied to various application fields such as GIS(Geographic Information system). To mosaic images, various methods such as image matching and histogram modification are needed. In this study, automated image mosaicking is performed using image matching method based on the multi-resolution wavelet analysis(MWA). Specifically, both area based and feature based matching method are embedded in the multi-resolution wavelet analysis to construct seam line.; seam points are extracted then polygon clipping method are applied to define overlapped area of two adjoining images. Before mosaicking, radiometric correction is proceeded by using histogram matching method. As a result, mosaicking area is automatically extracted by using polygon clipping method. Also, seamless image is acquired using multi-resolution wavelet analysis.
본 논문에서는 영상을 특성에 따라 국부 영역으로 분류하고 변위 공간(disparity space)상에서의 특징을 분석하여 각각의 영역에 적합한 윈도우의 크기를 정하는 새로운 스테레오 정합 기법을 제안한다. 일반적으로 텍스쳐(texture)가 적은 영역이나 텍스쳐가 반복되는 영역, 그리고 깊이의 불연속선상에서는 고정된 크기의 윈도우를 사용하는 영역 기반 스테레오 기법은 잘 동작하지 않는다. 본 논문에서는 이러한 영역들의 변위 공간상에서의 정합 값 분포를 분석하여 스테레오 정합에 이용한다. 실험은 변위의 참값이 알려진 영상에 대해서 수행되었으며 기존의 방법에 비해 짧은 수행 시간 및 정확한 정합 결과를 보여 준다.
In this paper, we propose a surface-based registration using a gaussian weighted distance map for PET-CT brain image fusion. Our method is composed of three main steps: the extraction of feature points, the generation of gaussian weighted distance map, and the measure of similarities based on weight. First, we segment head using the inverse region growing and remove noise segmented with head using region growing-based labeling in PET and CT images, respectively. And then, we extract the feature points of the head using sharpening filter. Second, a gaussian weighted distance map is generated from the feature points in CT images. Thus it leads feature points to robustly converge on the optimal location in a large geometrical displacement. Third, weight-based cross-correlation searches for the optimal location using a gaussian weighted distance map of CT images corresponding to the feature points extracted from PET images. In our experiment, we generate software phantom dataset for evaluating accuracy and robustness of our method, and use clinical dataset for computation time and visual inspection. The accuracy test is performed by evaluating root-mean-square-error using arbitrary transformed software phantom dataset. The robustness test is evaluated whether weight-based cross-correlation achieves maximum at optimal location in software phantom dataset with a large geometrical displacement and noise. Experimental results showed that our method gives more accuracy and robust convergence than the conventional surface-based registration.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.3
/
pp.76-88
/
1999
본 논문에서는 건물이 포함된 스테레오 영상으로부터 건물을 3차원적으로 복원하기 위한 선소 특징 기반 정합 알고리듬에 대해 다루고 있다. 기존의 선소 특징 기반 정합 알고리듬은 선소 추출 기법의 성능에 많이 의존하고, 좌우 영상에서 추출된 에지 길이와 방향이 서로 차이가 날 경우 오정합이 많이 발생한다. 따라서, 건물의 형태를 올바르게 나타내지 못하는 원인이 된다. 본 논문에서는 이러한 단점을 해결하기 위하여 선소의 중심 및 양 끝점 외에 선소에 방향까지 고려하는 새로운 탐색 영역 설정 방법을 제안하였다. 또한 선소기반 정합에서 정합이 잘 이뤄지지 않는 수평선 정합 문제를 해결하기 위한 새로운 방법을 제안하였다. 한편 편평한 건물 가정 하에서 미정합된 건물 내부의 변이값을 얻기 위해 건물 추출 결과와 정합된 선소들을 이용한 보간법을 사용하였다. 제안한 알고리듬을 스테레오 항공 영상에 적용한 결과, 기존의 Hussien 등이 제안한 알고리듬에 비해 좋은 성능을 보였다.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.443-445
/
1998
스트레오 영상 처리에 있어서 가장 중요한 단계는 좌우 영상간의 일치점을 찾는 영상 정합 단계라고 할 수 있다. 일반적인 영상 정합 방법으로는 영역 기반에 의한 방법과 특징점에 기반한 방법으로 나누어질 수 있다. 영역 기반의 방법은 많은 계산량을 필요로 하는 단점이 있으며, 특징점에 기반한 방법은 처리 속도는 향상시킬 수 있으나 전체적인 변이도를 구할 수 없는 단점이 있다. 한편 이미지 데이터 자체의 애매함이나 잡음, 처리 과정에서 발생하는 모호성, 인식과 해석 단계에서의 불확실한 지식등을 효과적으로 다루기 위해 퍼지 기법을 이용한 영상 처리 연구가 활발히 진행되고 있다. 본 논문에서는 각 픽셀의 밝기를 소속함수 값으로 변환한 후, 이 소속함수 값을 이용하여 좌우 영상의 일치점을 찾는 퍼지 스테레오 정합 알고리듬을 제안한다. 제안된 알고리듬은 몇 가지 스테레오 영상에 적용하여 그 유효성을 입증한다.
Journal of the Korean Institute of Intelligent Systems
/
v.8
no.6
/
pp.85-90
/
1998
The most important step image processing is stereo matching process. That is finding pixels of 3 dimensional pair in the left and right image. There are two matching methods. One is an area based approach and the other is a feature based approach. An area based approach needs much calculation time. In the other hand, we have the advantage of calculation time in the feature based approach, but can not obtain matched data for all pixels in the image. In recent years, fuzzy image processing methods are developed to manage vagueness and noise in image and ambiguous, inconsistent knowledge in recognition step. In this paper, we propose a fuzzy stereo matching algorithm. This method converts brightness data of image to fuzzy membership value and processes an area based approach method for stereo matching algorithm. We experiment with some stereo images to validate effectiveness of this algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.