영역기반 영상정합은 미리 정의된 특징의 도움 없이 영상을 정합할 수 있기 때문에, 기계학습과 접목된다면 이론 상 다양한 영상정합 문제에 적용 가능하다. 그러나 신속한 정합을 위하여, 미리 정의된 특징을 탐지하여 패치 쌍 후보를 선정에 사용하는데, 이는 영역기반 방법의 적용성에 제약을 준다. 이를 해소하기 위하여 본 연구에서는 단순히 두 패치의 관련도 뿐만 아니라 두 패치가 어느 정도 공간 상 떨어져 있는지에 대한 정보를 제공하는 ConvNet Dart를 개발하였다. 이러한 정보를 기반으로 효율적으로 패치 쌍 탐색공간을 줄일 수 있었다. 추가로 Dart가 제대로 작동할 수 없는 영역을 식별하는 ConvNet Fad를 개발하여 정합의 정밀도를 높였다. 본 연구에서는 이들을 딥러닝으로 학습하였으며, 이를 위해 소수의 정합된 영상에서 다량의 예제를 생성하는 방법을 개발하였다. 마지막으로 단순한 영상정합 문제에 성공적으로 적용하여, 이러한 방법론이 작동하는 것을 보였다.
최근 대규모 지역 혹은 전 지구에 걸친 분석 및 모니터링을 위한 위성영상의 사용이 늘어나면서 이를 처리하기 위한 효율적인 '영상좌표 상호등록'법이 요구되고 있다. 이에 본 연구에서는 일반적으로 오랜 시간이 소요되는 '영상좌표 상호등록'의 효율성을 높이기 위해 '사전검수영역기반정합법'(Pre-qualified area based matching)을 사용하였다. 이를 통해 '영상좌표 상호등록'시 연산시간을 현저히 단축시켰고 추출된 정합점에 과대오차제거법을 적용함으로서 단순히 영역기반정합법을 적용한 경우에 비해서 정확도가 향상됨을 확인할 수 있었다. 제안한 알고리즘을 이용하여 테스트 프로그램을 작성, 한반도 Landsat ETM+ 영상 3장을 이용하여 테스트하였다. 정합점 간의 평균제곱오차는 0.436 영상소, 정합점은 평균 38,475개로 나타났다. 연산시 간은 평균 약 8분으로 나타났다.
본 논문에서는 영역기반의 스테레오 정합을 사용하여 영상의 변이를 추정하는 방법에 대해 기술한다. 영역기반의 변이 추정은 분할된 영역단위로 변이값을 계산하는데 스테레오 정합 단계의 정합오류뿐만 아니라 정합된 영역의 유형을 고려하지 않고 일률적인 방법으로 변이를 계산하기 때문에 부정확한 변이를 추정하게 되는 문제점을 가진다. 이런 문제점을 해결하기 위해 본 논문에서는 정합된 영역의 유형을 고려하여 변이를 추정하는 방법을 제안한다. 제안하는 방법은 스테레오 정합 수행 후 정합영역의 유형을 분석하여 유사정합, 비유사정합, 오정합, 비정합 영역으로 분류한 다음 분류된 정합영역별로 적절한 변이 추정 방법을 적용한다. 이 방법은 정합오류로 인한 잘못된 변이 추정을 최소화하며 정상적인 정합영역에 대해서도 변이의 정확도를 향상시킨다. 제안하는 방법의 성능을 평가하기 위해 다양한 장면에 대해 실험을 하였으며 실험결과 다양한 영상에서 정확도가 향상된 변이도를 얻을 수 있었다.
항공영상을 이용하여 수치표면자료와 같은 3차원 자료를 자동으로 제작하기 위해서는 영상정합이 반드시 필요하다. 최근 사용되고 있는 항공 디지털 프레임 영상은 과거의 아날로그 영상에 비해 폐색지역이 적은 고중복도 다중 스트립 영상으로 촬영되기에 용이하다. 최근 다중 스트립 영상을 이용한 다중영상정합 기법에 대한 연구가 많이 이루어지고 있으며, 특히 각 영상에서 추출된 점(point feature)이나 형상(linear feature)의 유사성 측정 방법에 대한 연구가 진행되고 있다. 본 연구에서는 수직궤적 기반 다중영상정합을 대상으로 영역기반 유사성 측정 방법으로 SNCC(Sum of Normalized Cross-Correlation)와 SSD(Sum of Squared-Difference) 방법을 비교 분석하였다. 또한 영역기반 유사성 측정에 필요한 요소로 영상의 화소값, 화소값 기울기 강도, 화소값과 화소값 기울기 강도 평균을 각각 사용하여 결과를 비교하였다. 이 외에도 영역기반 유사성 측정에서 중요한 요소인 기준 윈도우의 크기를 비정규 적응형 기준 윈도우 방법과 정규 적응형 윈도우 방법을 적용하여 결과를 비교 분석하였다. 실험을 위하여 사용된 항공영상은 ZI Imaging 사의 DMC (Digital Modular Camera)에 의해 종중복도는 80%, 횡중복도는 60%로 촬영되었으며, 3개의 스트립으로 구성되었다. 다양한 방법으로 실험을 수행한 결과에 따르면 유사성 측정 방법으로는 SNCC, 유사성 측정 요소로는 화소값과 화소값 기울기 강도 평균, 그리고 비정규 적응형 기준 윈도우가 수직궤적 기반 다중영상정합의 영역기반 유사성 측정에 가장 적합하다는 것을 확인하였다.
최근 위성 탑재 센서의 종류와 영상의 공간해상도가 다양해지고 서로 다른 시기에 관측 수집된 영상자료를 모자이크하여 지형공간정보체계(GIS)와 같은 응용분야에서의 활용에 대한 필요성이 점차 커지고 있다. 영상 모자이크에는 영상정합, 분광정보 조정과 같은 다양한 기법들이 필요하다. 웨이블렛 변환 기반 영상정합 기법을 적용하여 영상 모자이크의 자동화에 대해 연구하고자 하였다. 본 논문에서는 폴리곤 클리핑 기법을 적용하여 두 영상에서 중복 영역을 추출하고자 중복영역에 대하여 형상 기반 정합과 영역 기반 정합을 동시에 적용하는 웨이블렛 변환 기법을 이용함으로써 자동으로 접합점을 추출하였다. 또한 영상 모자이크를 수행함에 있어서 두 영상의 분광 정보를 조정하기 위한 방사 보정기법은 히스토그램 정합 기법을 적용하여 연구 분석하였다. 본 연구에서 적용한 폴리곤 클리핑 기법 결과로 중복영역과 모자이킹 영역을 자동을 추출할 수 있었다. 그리고 다해상도 웨이블렛 분석 기법을 이용하여 특징점에 대해 영상정합을 수행하고 이를 이용하여 모자이킹 접합선을 추출한 결과 접합부분에서 불연속 부분 없이 모자이킹 영상을 생성할 수 있었다.
본 논문에서는 영상을 특성에 따라 국부 영역으로 분류하고 변위 공간(disparity space)상에서의 특징을 분석하여 각각의 영역에 적합한 윈도우의 크기를 정하는 새로운 스테레오 정합 기법을 제안한다. 일반적으로 텍스쳐(texture)가 적은 영역이나 텍스쳐가 반복되는 영역, 그리고 깊이의 불연속선상에서는 고정된 크기의 윈도우를 사용하는 영역 기반 스테레오 기법은 잘 동작하지 않는다. 본 논문에서는 이러한 영역들의 변위 공간상에서의 정합 값 분포를 분석하여 스테레오 정합에 이용한다. 실험은 변위의 참값이 알려진 영상에 대해서 수행되었으며 기존의 방법에 비해 짧은 수행 시간 및 정확한 정합 결과를 보여 준다.
본 논문에서는 PET-CT 뇌 영상융합을 위해 가우시안 가중치 거리지도를 이용한 표면기반 영상정합을 제안한다. 제안방법은 중요 세 단계로 표면 특징점 추출, 가우시안 가중치 거리지도 생성, 가중치기반 유사도 평가로 구성된다. 첫째, PET 영상과 CT 영상에서 삼차원 역 영역성장법을 이용하여 머리영역을 분할하고 머리 영역과 같이 분할된 잡음 영역을 영역성장법기반 레이블링을 이용한 영역 크기 비교를 통해 제거한 후 선명화 처리 필터를 적용하여 머리 표면 특징점을 추출한다. 둘째, CT 영상에서 추출한 표면 특징점에 가우시안 가중치 거리지도를 생성하여 큰 변위에서도 최적의 위치로 견고하게 수렴하도록 한다. 셋째, 가중치기반 상호상관관계는 PET 영상에서 추출한 표면 특징점과 대응되는 CT 영상의 가우시안 가중치 거리지도를 이용하여 최적 위치를 탐색한다. 본 논문에서는 제안방법의 정확성과 견고성 검사를 위해 인공데이타를 이용하고, 수행시간과 육안평가를 위해 임상데이타를 이용한다. 정확성 검사는 임의로 변환된 인공데이타에 제안방법을 적용한 후 추출된 최적화 변환벡터와의 오차를 제곱근평균제곱오차를 이용하여 평가한다. 견고성 검사는 큰 변위와 잡음을 가지는 인공데이타에서 가중치기반 상호상관관계가 최적의 위치에서 최대를 이루는지를 평가한다 실험 결과 제안한 표면기반 영상정합이 기존 표면기반 영상정합보다 정확하고 견고하게 수렴됨을 알 수 있다.
본 논문에서는 건물이 포함된 스테레오 영상으로부터 건물을 3차원적으로 복원하기 위한 선소 특징 기반 정합 알고리듬에 대해 다루고 있다. 기존의 선소 특징 기반 정합 알고리듬은 선소 추출 기법의 성능에 많이 의존하고, 좌우 영상에서 추출된 에지 길이와 방향이 서로 차이가 날 경우 오정합이 많이 발생한다. 따라서, 건물의 형태를 올바르게 나타내지 못하는 원인이 된다. 본 논문에서는 이러한 단점을 해결하기 위하여 선소의 중심 및 양 끝점 외에 선소에 방향까지 고려하는 새로운 탐색 영역 설정 방법을 제안하였다. 또한 선소기반 정합에서 정합이 잘 이뤄지지 않는 수평선 정합 문제를 해결하기 위한 새로운 방법을 제안하였다. 한편 편평한 건물 가정 하에서 미정합된 건물 내부의 변이값을 얻기 위해 건물 추출 결과와 정합된 선소들을 이용한 보간법을 사용하였다. 제안한 알고리듬을 스테레오 항공 영상에 적용한 결과, 기존의 Hussien 등이 제안한 알고리듬에 비해 좋은 성능을 보였다.
스트레오 영상 처리에 있어서 가장 중요한 단계는 좌우 영상간의 일치점을 찾는 영상 정합 단계라고 할 수 있다. 일반적인 영상 정합 방법으로는 영역 기반에 의한 방법과 특징점에 기반한 방법으로 나누어질 수 있다. 영역 기반의 방법은 많은 계산량을 필요로 하는 단점이 있으며, 특징점에 기반한 방법은 처리 속도는 향상시킬 수 있으나 전체적인 변이도를 구할 수 없는 단점이 있다. 한편 이미지 데이터 자체의 애매함이나 잡음, 처리 과정에서 발생하는 모호성, 인식과 해석 단계에서의 불확실한 지식등을 효과적으로 다루기 위해 퍼지 기법을 이용한 영상 처리 연구가 활발히 진행되고 있다. 본 논문에서는 각 픽셀의 밝기를 소속함수 값으로 변환한 후, 이 소속함수 값을 이용하여 좌우 영상의 일치점을 찾는 퍼지 스테레오 정합 알고리듬을 제안한다. 제안된 알고리듬은 몇 가지 스테레오 영상에 적용하여 그 유효성을 입증한다.
스테레오 영상 처리에 있어서 중요한 단계는 스테레오 정합 과정이다. 이 과정은 좌우 영상에서 3차원적 일치점을 찾는 것이다. 이 방법에는 두 가지 방법이 있다. 첫 번째 방법은 영역기반의 접근방법이며 두 번째 방법은 특징기반의 방법이다. 영역기반의 방법은 많은 연산시간을 필요로 하는 반면에, 특징기반의 방법은 연산시간에 있어서는 장점이 있으나, 영상의 전체 화소에 대한 정합을 실시할 수 없는 단점이 있다. 최근, 영상처리에 있어서 영상의 모호함, 잡음, 지시그이 애매함과 모순성을 해결하기 위해서 퍼지 영상처리 방법이 연구되고 있다. 본 논문에서는 퍼지 스테레오 정합 알고리즘을 제안한다. 이 방법은 영상의 밝기 정보를 퍼지 소속함수를 통해서 퍼지화하고, 스테레오 정합을 위해서 영역기반의 접근방법을 수행한다. 실험을 통해 몇 가지의 스테레오 영상을 시험하여 그 유효성을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.