• Title/Summary/Keyword: 영역기반 매칭

Search Result 220, Processing Time 0.024 seconds

A Study on Region matching method for Region-based Image Retrieval (영역 기반 이미지 검색을 위한 영역 매칭 방법에 관한 연구)

  • 추연웅;최기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.155-158
    • /
    • 2002
  • 본 논문은 영역기반의 영상 검색을 위해 향상된 영역 매칭 알고리즘을 구현하고자 한다. 최근의 Mpeg-7표준은 객체 기반의 영상처리를 특징으로 하고 있으며, 객체 기반의 영상 처리방법들에서 가장 대표적인 방법인 영역기반 검색 방법은 영역 분할과 특징 추출, 그리고 영역매칭을 통한 유사도 측정에 따른 검색으로 나뉘어 진다. 본 논문에서는 영상을 분할한 후 분할된 영역들에 대한 특징을 추출 하고, 추출된 특징들을 다차원 특징 공간에서의 클러스터로 구성한다. 그리고 구성된 클러스터들을 인접한 중심을 가진 특징 그룹화 하여 특징 그룹 중심간의 거리차를 이용하여 질의 이미지와 검색 이미지의 유사도를 측정하는 영역 매칭 방법을 제안한다.

  • PDF

Image Segment-Based Stereo Matching for Improving Boundary Accuracy (경계영역 정확도 향상을 위한 영상분할 기반 스테레오 매칭)

  • Mun, Ji-Hun;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.63-66
    • /
    • 2015
  • 3차원 영상을 생성하기 위해 스테레오 매칭을 통해 깊이 정보를 획득한다. 이때 발생하는 경계영역과 텍스처가 부족한 부분의 깊이정보 부정확성 문제를 해결하기 위해 영상 분할 기반 스테레오 매칭 방법을 제안한다. 일반적으로 사용하는 윈도우 기반 스테레오 매칭 결과를 기반으로 분할된 영상 내에서 최적의 변위 값을 재 할당함으로서 깊이정보의 정확성을 향상시킬 수 있다. Mean-shift는 참조 영상에서 화소 간 평균값 차이가 최대가 되는 영역들을 반복적으로 찾는다. 유사한 평균값을 갖는 영역들을 기반으로 영상을 분할하는 것을 Mean-shift를 이용한 영상분할 이라고 한다. 분할된 영상은 각 영역을 대표하는 패치 구조를 가지고 있어 참조 영상에 포함되어있는 잡음에 강인한 특성을 지닌다. 스테레오 매칭을 통해 화소별로 변위 값을 할당해주는 대신, 분할된 영상을 이용하여 각 분할 영역에 동일한 변위 값을 할당한다. 분할된 영상에 동일한 변위 정보를 할당할 경우 객체와 배경의 경계영역에서 잘못된 변위 값이 할당되는 경우가 발생한다. 이러한 경계 영역의 변위정보 부정확성을 보완하기 위해 화소의 기울기 항을 비용 값 계산 과정에 추가하여 단점을 보완한다. 최종 비용 값 계산을 통해 획득한 초기 변위 지도에 중간 값 필터를 적용하여 분류된 영역에 동일한 변위 값을 할당한다. 제안한 방법을 적용하여 경계영역의 정확도가 향상된 최종 변위 지도를 획득한다.

  • PDF

Comparison with various approach algorithms for Fast Stereo Matching in Real-time system (실시간 시스템에서의 빠른 스테레오 매칭을 위한 다양한 접근 알고리즘의 성능비교)

  • Kim, Ho-Young;Lee, Seong-Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.303-304
    • /
    • 2011
  • 영역기반 스테레오 매칭의 분야에서 최근 인간의 시각체계(Human Visual System)에 기반하여 영역내의 밝기값과 거리값에 따라 적응적으로 가중치를 부여하는 적응적 영역 가중치(Adaptive Support-Weight) 방법이 좋은 매칭 결과를 보이고 있다. 하지만 이 방법은 영역 윈도우의 크기가 커짐에 따라 기하급수적으로 계산량이 많아지는 단점을 보이고 있다. 이에 Bilateral filter 수식으로 근사화 후 Integral Histogram 기법을 적용하여 영역 윈도우의 크기에 상관없이 상수 시간 O(1) 내에 매칭을 수행하는 연구가 진행되었다. 하지만 이 방법은 근사화 과정에서의 원 ASW 수식을 왜곡하기 때문에 매칭 정확도의 손실을 가져오게 된다. 이에 본 논문에서는 Bilateral 접근 방식, Sub-Block 방식 및 적응적 시차 탐색 방식에 대하여 각 방식에서 필요한 메모리 자원과 소모되는 계산량의 비용과 동시에 매칭 결과 정확도 면에서 비교하고 가장 좋은 접근 방식을 도출하고자 한다.

  • PDF

Area-based Stereo Matching Method for Extract ins a Human Pace Image (사람 얼굴 영상 획들을 위한 영역기반 스테레오 매칭 기법)

  • 정창성;유채곤;황치정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.655-657
    • /
    • 2002
  • 본 논문에서는 스테레오 영상에서 두 영상간의 깊이(Depth) 정보를 이용해서 영역을 기반으로 한 영상매칭을 수행한 추 사람의 얼굴 영역을 결정한다 영역 결정은 설정된 탐색 윈도우에 의해 좌, 우 영상간의 MSE(Minimum Square Error)를 검색하는 알고리즘을 제안한다. 매칭 과정에서 발생하는 영역 오류를 보정하기 위해서 타원 마스크를 이용하는 방법을 제안하며 실행 시간을 줄이기 위하여 2D 도메인에서 쿼드트리(Quad-tree) 윈도우를 사용한다.

  • PDF

Hybrid Stereo Matching Based on Patch (패치 기반의 하이브리드 스테레오 매칭)

  • Kil Woo-Sung;Kim Shin-Hyoung;Jang Jong Whan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.833-836
    • /
    • 2004
  • 세그먼트 패치(Segment Patch) 기반의 스테레오 매칭에 있어서, 매칭의 속도와 정확도는 세그먼트 패치를 생성하는 과정에 의존한다. 본 논문에서는 매칭 프리미티브로 사용되는 세그먼트 패치를 결정하는 과정으로 영상의 강도와 함께 인접 세그먼트 패치들 사이의 깊이를 고려하여 최적의 세그먼트 패치를 결정하는 방법을 제안하였다. 그 결과 영상의 강도 변화가 작은 영역에서 뿐만 아니라 패치 매칭의 취약함으로 지적되었던 복잡한 영역에서도 좋은 결과를 보여 주었다.

  • PDF

An Efficient Approximation method of Adaptive Support-Weight Matching in Stereo Images (스테레오 영상에서의 적응적 영역 가중치 매칭의 효율적 근사화 방법)

  • Kim, Ho-Young;Lee, Seong-Won
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.902-915
    • /
    • 2011
  • Recently in the area-based stereo matching field, Adaptive Support-Weight (ASW) method that weights matching cost adaptively according to the luminance intensity and the geometric difference shows promising matching performance. However, ASW requires more computational cost than other matching algorithms do and its real-time implementation becomes impractical. By applying Integral Histogram technique after approximating to the Bilateral filter equation, the computational time of ASW can be restricted in constant time regardless of the support window size. However, Integral Histogram technique causes loss of the matching accuracy during approximation process of the original ASW equation. In this paper, we propose a novel algorithm that maintains the ASW algorithm's matching accuracy while reducing the computational costs. In the proposed algorithm, we propose Sub-Block method that groups the pixels within the support area. We also propose the method adjusting the disparity search range depending on edge information. The proposed technique reduces the calculation time efficiently while improving the matching accuracy.

Guide Filter based Cost Optimization Method for Accurate Depth Map Generation (정확한 깊이지도 생성을 위한 가이드 필터기반 비용 최적화 방법)

  • Mun, Ji-Hun;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.1-4
    • /
    • 2016
  • 효율적으로 깊이지도를 획득하기 위해 다양한 방법의 지역 기반스테레오 매칭 방법이 사용된다. 일반적인 지역기반 스테레오 매칭에 사용되는 비용값 계산 방법을 통해 깊이지도를 생성하게 되면 객체의 경계 영역이 무너지거나, 유사한 텍스쳐 정보가 연속적으로 나타나는 영역에서 부정확한 깊이값을 얻는 문제가 발생한다. 본 논문에서는 깊이지도의 정확성을 높이기 위해 2가지 단계를 거쳐 최종 깊이지도를 생성한다. 처음으로, 일반적으로 사용하는 지역기반 스테레오 매칭 비용 함수와 입력 영상의 기울기를 고려한 초기 비용값을 가이드 필터를 이용하여 최적의 비용값을 찾아 초기 변위지도를 생성한다. 스테레오매칭을 수행할 경우, 시점의 차이로 인해 보이지 않는 영역에서 정확한 변위값을 찾지 못하는 문제가 발생한다. 이러한 문제를 해결하기 위해 좌영상과 우영상을 기반으로 획득한 변위지도를 사용하여 교차검사를 함으로써 폐색영역을 찾아낸다. 폐색 영역을 이웃한 화소의 값을 사용하여 채울 경우 실선과 같은 오류가 결과 영상에 나타나게 된다. 이러한 오류 영역을 제거하기 위해 마지막으로 가중치를 적용한 중간값 필터를 적용한다. 실험 결과 제안한 방법을 사용하여 획득한 깊이지도가 기존의 방법보다 정확한 깊이값을 얻는 것을 확인할 수 있었다.

  • PDF

Semantic Segmentation using Iterative Over-Segmentation and Minimum Entropy Clustering with Automatic Window Size (자동 윈도우 크기 결정 기법을 적용한 Minimum Entropy Clustering과 Iterative Over-Segmentation 기반 Semantic Segmentation)

  • Choi, Hyunguk;Song, Hyeon-Seung;Sohn, Hong-Gyoo;Jeon, Moongu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.826-829
    • /
    • 2014
  • 본 연구에서는 야외 지형 영상 및 항공 영상 등에 대하여 각각의 영역들의 속성을 분할 및 인식 하기 위해 minimum entropy clustering 기반의 군집화 기법과 over-segmentation을 반복 적용하여 군집화 하는 두 방법을 융합한 기법을 제안하였다. 이 기법들을 기반으로 각 군집의 대표 영역을 추출한 후에 학습 데이터를 기반으로 만들어진 텍스톤 사전과 학습 데이터 각각의 텍스톤 모델을 이용하여 텍스톤 히스토그램 매칭을 통해 매칭 포인트를 얻어내고 얻어낸 매칭 포인트를 기반으로 영역의 카테고리를 결정한다. 본 논문에서는 인터넷에서 얻은 일반 야외 영상들로부터 자체적으로 제작한 지형 데이터 셋을 통해 제안한 기법의 우수성을 검증하였으며, 본 실험에서는 영역을 토양, 수풀 그리고 물 지형으로 하여 영상내의 영역을 분류 및 인식하였다.

Disparity estimation based on edge fiducial points and adaptive window (경계선의 특정 기준점과 적응적 윈도우를 기반으로 한 변위 추정)

  • 노윤향;고병철;변혜란;유지상
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.559-561
    • /
    • 2001
  • 본 논문에서는 스테레오 영상으로부터 변위를 추정할 수 있는 다양한 방법들 중 특정 기반 방식과 영역 기반 방식의 각각의 장점들을 살리고 단점들을 보완하기 위한 방법은 제안한다. 영상의 경계선을 이루는 특징점들은 전체 영상의 5% 내외의 소수로 추출되면서도 많은 양의 영상 정보를 가지고 있으므로, 이 점들에 대해 일정한 매칭 과정을 통해 대응점을 구하고, 이 중 90% 이상의 정확성 매칭 확률을 가진 대응점들을 영상으로 기준점으로 설정한다. 그리고 이러한 기준점 이외의 점들에 대해서는 추출된 기준점들의 순서에 맞추어 Ordering Constraint를 적용시키고 기준점에 따라 블록의 크기가 달라지는 영역 기반 방식을 적용하여 조밀한 변위를 추정하였다. 이렇게 함으로써 영역 기반 방식과 특징 기반 방식의 각각의 장점들을 이용하면서도 특정기반 방식의 문제점인 보간법 문제를 해결하였고, 또한 블록의 크기 따라 계산 시간과 정합 오차가 많이 좌우되는 영역 기반 방식의 단점들을 해결하였다. 또한 기준점을 이용하여 Ordering constraint 기반하에 영역 정보를 이용하므로 좀 더 올바른 순서 조건에 맞추어 대응점을 찾을 수 있고 또한 폐쇄 영역 부분도 쉽게 찾을 수 있었다.

  • PDF

Object Matching Using Invariant moments (불변의 모멘트를 이용한 객체 매칭)

  • 이윤성;원치선
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1980-1983
    • /
    • 2003
  • 자동으로 분할된 영상에서 각각의 영역들은 동질의 특징을 가지는 성분들로 구성되어 있다. 그러나 대부분의 경우 하나의 영역만으로는 특정한 혹은 의미 있는 오브젝트를 정확히 표현 할 수 없다. 이 중에서 하나 이상의 영역 즉 비슷한 특징을 갖는 몇몇 영역들의 집합이 사용자에게 있어서 의미 있는 오브젝트를 구성한다고 볼 수 있다 이를 전제로 본 논문에서는 분할된 영상 내에 존재하는 기저 영역들의 모멘트 추출을 기반으로 하는 객체 매칭 기법을 제안한다. 제안된 매칭 방법에서는 자동 영상 분할된 각 영역들로부터 모멘트를 추출하고 이 정보를 이용하여 조합된 영역에 대한 모멘트를 계산하게 되고, 다시 이들 조합된 영역의 모멘트를 이용하여 그 영역의 쉐입(shape) 특징 벡터를 추출한다. 이를 통하여 사용자가 찾고자 하는 영역과 분할영상내의 모든 영역의 조합에 대해서 초기에 추출된 정보만을 이용하여 매칭할 수 있도록 하였다.

  • PDF