• Title/Summary/Keyword: 영역검출

Search Result 3,099, Processing Time 0.042 seconds

Game Interface using Robust Skin Color Detection (조명 변화에 강건한 피부색 검출을 사용한 게 임 인터페이스)

  • 장상수;박혜선;김항준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.736-738
    • /
    • 2004
  • 최근 사용자의 제스처를 이용한 게임 시스템에 대한 연구가 많은 관심을 받고 있다. 사용자의 얼굴 및 손의 움직임을 이용하여 게임을 제어하기 위해서는 복잡한 배경 및 조명에 강건한 얼굴 및 손 영역의 추출이 필수적이다. 본 논문에서는 조명 변화에 강건한 피부색 검출을 이용한 게임 인터페이스를 제안한다. 이를 위해 제안된 시스템은 다음의 두 단계로부터 얼굴 및 손 영역을 추출한다. 먼저, 피부색과 유사한 물건들을 제거하기 위해 배경 영상과 현재 영상의 차영상으로부터 전경물체를 추출한다. 그 다음, 조명에 의한 깜박임이나 잡음을 줄이기 위해서 SCT 알고리즘을 이용하여 전경물체 영역 안에서 피부색 영역만을 정확하게 검출한다. 추출된 얼굴 및 손의 움직임으로부터 얻어지는 제스처는 은닉마르코프 모델을 사용하여 인식된다. 복잡한 환경에서 실험한 결과, 제안된 시스템은 정확한 피부색 영역 검출을 제공하고 이를 통한 보다 정확한 인식률을 제공할 수 있다는 것이 증명되었다.

  • PDF

A Facial Region Detection Using the Skin-Color Segmentation and Sobel Mask (피부색 분할과 소벨 마스크를 이용한 얼굴 영역 검출)

  • 유창연;권동진;장언동;김영길;곽내정;안재형
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.553-558
    • /
    • 2002
  • 본 논문에서는 컬러 영상에서 피부색 분할과 소벨 마스크를 이용한 얼굴 영역 검출 알고리즘을 제안한다. 제안된 알고리즘은 YCbCr색공간에서 Cb와 Cr성분을 이용하여 피부색 분할을 한 후에 형태학적 필터링과 레이블링을 통해 얼굴 후보 영역을 분리한다. 분리된 각 후보 영역에 대해 휘도 성분 Y에서 소벨 마스크의 수직 연산자를 적용한 후에 수평 투영을 통해 나타난 최대값을 눈의 위치로 검출해낸다. 비슷하게 얼굴의 지형적인 특징과 소벨 마스크의 수평 연산자를 적용하여 계산된 수평 투영의 최대값에 따라 턱 부분을 검출한다. 컴퓨터 시뮬레이션 결과는 제안된 방법이 기존의 방법보다 얼굴 영역을 정확하게 분리할 수 있음을 보인다.

  • PDF

A Cracks Detection of Spectacle Lens using Fuzzy Method (퍼지 기법을 이용한 안경 렌즈의 흠집 검출)

  • Choi, Kyoung-Yeol;Lee, Won-Joo;Kim, Kwang-Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.171-174
    • /
    • 2010
  • 본 논문에서는 렌즈의 흠집을 추출할 수 있는 퍼지 기법을 이용한 렌즈 흠집 검출 방법을 제안한다. 제안된 방법은 렌즈 영상을 그레이 영상으로 변환한 후, 캐니 마스크를 이용하여 렌즈의 경계선을 추출한다. 추출된 렌즈의 경계선에 대해 평균 이진화와 모폴로지를 이용하여 렌즈 경계선을 보정한다. 렌즈 경계선이 보정된 영상에서 Seed Fill 알고리즘을 적용하여 렌즈의 내부 영역만을 추출한다. 추출된 렌즈의 내부 영역에 해당하는 원 영상에서 소벨 마스크를 적용하여 렌즈 내부 영역의 에지를 추출한다. 렌즈 내부 영역에서 추출된 에지 객체들의 정보를 이용하여 흠집과 비흠집을 분류하는 퍼지 기법을 적용하여 흠집 영역을 추출한다. 본 논문에서 제안된 렌즈의 흠집 검출 방법의 성능을 평가하기 위해 CHEMI, MID, HL, HM 시력 보정용 렌즈를 대상으로 실험한 결과, 제안된 방법이 흠집을 효과적으로 검출하는 것을 확인하였다.

  • PDF

Real-Time Face Detection based on Skin-Color and Lighting Compensation (색공간에서 피부색과 조명보정을 이용한 실시간 얼굴 영역 검출)

  • Song Sang-Geun;Kim Soo-Hyung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.889-891
    • /
    • 2005
  • 본 논문에서는 실시간 영상을 대상으로 조명변화에 강인한 얼굴 영역 자동 검출 방법을 제안한다. 실시간 영상에서 가장 효율적이고 컴퓨터의 계산량을 줄일 수 있는 색상 정보를 이용하여 얼굴 영역을 추출함에 있어 색상 정보사용 시 단점인 외부 조명의 영향을 줄여주는 효과적인 조명 보정 방법을 제시하고 조명 보정에 의해 평활화된 영상에서 YCbCr 색상모델을 적용하여 얼굴 후보 영역을 검출하는 방법을 제시한다. 실험 결과 조명의 영향을 많이 받는 실시간 영상에서 적응적 조명 보정 방법으로 영상을 향상시킨 뒤 Cb, Cr 그리고 Y를 이용함으로서 기존의 방법보다. 얼굴 영역을 보다 정확하게 검출할 수 있음을 볼 수 있었다.

  • PDF

Brain Trouble Detection of MRI Image using Markov Random Field (마르코프 랜덤 필드를 이용한 자기 공명 영상의 뇌질환 검출)

  • 조상현;염동훈;김태형;김두영
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.1-5
    • /
    • 2003
  • 의료영상의 분할은 의료영상을 컴퓨터 진단 및 가시화에 필요한 같은 성질을 가진 여러 조직으로 나누어주는 방법이다. 즉 입력되어진 영상을 처리하여 유사한 화소들의 집합인 영역들로 화소들을 구분하는 작업이며 영상분할의 결과는 영상인식의 정확성에 큰 영향을 미친다. MRI(Magnetic Resonance Imaging)으로부터 정상적인 세포조직 또는 뇌종양과 같은 비정상적인 세포조직의 가시화와 분석을 위해서는 대상 세포조직의 적절한 분류를 필요로 한다. 하지만 기존의 영역 검출 방법으로는 잡음이 섞여 있는 영상에서 여러 가지의 처리과정(주로 잡음 제거)이 필수적이고 그런 과정으로 인해 정확한 영역 검출이 힘들게 된다. 이에 잡음이 있더라도 이를 제거하기 위한 처리가 필요 없이 영역기반으로 필요한 파라미터의 추정을 통한 MRF(Markov Random Field)를 이용하여 보다 효율적이고 정확하게 MRI에서 질환 영역을 검출할 수 있다.

  • PDF

Character-level Region Detection Using Attention Center (어텐션 중심을 이용한 글자 단위 영역 검출)

  • Kim, Jiin;Jeong, Chang-Sung
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.952-953
    • /
    • 2019
  • 최근 딥러닝으로 진행되는 광학 문자 인식 분야는 대부분 단어 단위로 인식하는 것으로 글자 단위의 영역을 검출하는 데에는 적합하지 못하다. 본 연구는 각 글자의 영역을 검출하기 위해 기존의 딥러닝을 이용한 광학 문자 인식 절차인 단어 분리 과정과 단어 인식 과정을 유지하면서 어텐션 중심을 이용하여 각 글자의 영역을 보다 정확하게 검출하는 것을 목표로 한다. 제안하는 모델은 CRAFT 와 Attention Network 를 사용한 OCR 과정을 확장한 모델로 각 단어 문자열 결과물에 각 글자의 영역을 추가로 나타내게 되며 각 글자와 라벨 간의 IOU 평균은 0.671 로 나타났다.

Flame Detection Using Haar Wavelet and Moving Average in Infrared Video (적외선 비디오에서 Haar 웨이블릿과 이동평균을 이용한 화염검출)

  • Kim, Dong-Keun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.367-376
    • /
    • 2009
  • In this paper, we propose a flame detection method using Haar wavelet and moving averages in outdoor infrared video sequences. Our proposed method is composed of three steps which are Haar wavelet decomposition, flame candidates detection, and their tracking and flame classification. In Haar wavelet decomposition, each frame is decomposed into 4 sub- images(LL, LH, HL, HH), and also computed high frequency energy components using LH, HL, and HH. In flame candidates detection, we compute a binary image by thresholding in LL sub-image and apply morphology operations to the binary image to remove noises. After finding initial boundaries, final candidate regions are extracted using expanding initial boundary regions to their neighborhoods. In tracking and flame classification, features of region size and high frequency energy are calculated from candidate regions and tracked using queues, and we classify whether the tracked regions are flames by temporal changes of moving averages.

Detection of Facial Region and features from Color Images based on Skin Color and Deformable Model (스킨 컬러와 변형 모델에 기반한 컬러영상으로부터의 얼굴 및 얼굴 특성영역 추출)

  • 민경필;전준철;박구락
    • Journal of Internet Computing and Services
    • /
    • v.3 no.6
    • /
    • pp.13-24
    • /
    • 2002
  • This paper presents an automatic approach to detect face and facial feature from face images based on the color information and deformable model. Skin color information has been widely used for face and facial feature diction since it is effective for object recognition and has less computational burden, In this paper, we propose how to compensates varying light condition and utilize the transformed YCbCr color model to detect candidates region of face and facial feature from color images, Moreover, the detected face facial feature areas are subsequently assigned to a initial condition of active contour model to extract optimal boundaries of face and facial feature by resolving initial boundary problem when the active contour is used, The experimental results show the efficiency of the proposed method, The face and facial feature information will be used for face recognition and facial feature descriptor.

  • PDF

Histogram Analysis in Separated Region for Face Contour Extraction under Various Environmental Condition (다양한 환경 조건에서의 얼굴 윤곽선 영역 검출을 위한 분할 영역 히스토그램 분석)

  • Do, Jun-Hyeong;Kim, Keun-Ho;Kim, Jong-Yeol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Some methods employing the Active Contour Model have been widely used to extract face contour. Their performance, however, depends on the initial position of the model and the coefficients of the energy function which should be reconsidered whenever illumination and environmental condition of an input image is changed. Additionally, the number of points in the contour model should increase drastically in order to extract a fine contour. In this paper, we thus propose a novel approach which extracts face contour by segmenting the face region with threshold values obtained by a histogram analysis technique in the separated region of input image. The proposed method shows good performance under various illumination and environmental condition since it extracts face contour by considering the characteristics of the input image.

Real-Time Pupil Detection System Using PC Camera (PC 카메라를 이용한 실시간 동공 검출)

  • 조상규;황치규;황재정
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1184-1192
    • /
    • 2004
  • A real-time pupil detection system that detects the pupil movement from the real-time video data achieved by the visual light camera for general purpose personal computer is proposed. It is implemented with three steps; at first, face region is detected using the Haar-like feature detection scheme, and then eye region is detected within the face region using the template-based scheme. Finally, pupil movement is detected within the eye region by convolution of the horizontal and vertical histogram profiling and Gaussian filter. As results, we obtained more than 90% of the detection rate from 2375 simulation images and the data processing time is about 160㎳, that detects 7 times per second.