• Title/Summary/Keyword: 영양염 감소

Search Result 366, Processing Time 0.02 seconds

Characteristics of Nutrient Distribution by the Natural and Artificial Controlling Factors in Small Stream Estuary (소하천 하구(남해 당항포)에서 자연적, 인위적 요인이 영양염 분포에 미치는 영향)

  • KANG, SUNGCHAN;PARK, SOHYUN;AN, SOONMO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.1
    • /
    • pp.1-17
    • /
    • 2017
  • This study was conducted to investigate the nutrient distribution and controlling factors in small stream estuaries. The seasonal variations of nutrient concentration (nitrate, ammonium and phosphate) were observed from 2010 to 2012 in the three streams located in Dang-hang (closed estuary: Go-seong, open estuary: Gu-man and Ma-am). The nutrient concentrations in Go-seong were significantly higher than other estuaries, because Go-seong is relatively large and has large nutrient load from the watershed. The dyke located at the estuary, also, caused the high nutrient concentration by reducing the dilution and increasing residence time. In all three streams, nitrate concentration was high at upstream and decreased toward the downstream, because high load of nutrient input were located at upstream. Dilution and biogeochemical removal toward the downstream also caused the trends. Especially, denitrification, a typical nitrogen removing process showed clear tendency of gradual decreasing from upstream to downstream. However, Ammonium and phosphate concentrations were high at upstream and decreased toward the downstream only when the nutrient loads from the rivers were high. Nutrient concentrations were low in summer and high in winter. Freshwater discharge in summer caused a decrease of the residence time and increase of the transport of nutrients to downstream and reduced the nutrient concentrations in the estuary. Nutrient removal by the biological production during high temperature periods also affected the low nutrient concentrations. Small stream estuaries showed distinct nutrient dynamics. It is necessary to understand these characteristics in order to properly manage the small stream estuary.

Springtime Distribution of Inorganic Nutrients in the Yellow Sea: Its Relation to Water Mass (수괴특성에 따른 춘계 황해의 영양염 분포 특성)

  • Kim, Kyeong-Hong;Lee, Jae-Hak;Shin, Kyung-Soon;Pae, Se-Jin;Yoo, Sin-Jae;Chung, Chang-Soo;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.224-232
    • /
    • 2000
  • Inorganic nutrient concentrations in relation to springtime physical parameters of the Yellow Sea were investigated during April 1996. Three major water masses, i.e., the Yellow Sea Warm Current Water (YSWC), Coastal Current Water (CCW) and Changjiang River Diluted Water (CRDW), prevailed in the study area. Water masses were vertically wel1 mixed throughout the study area, and nutrients were supplied adequately from bottom to surface layer. As result of ample nutrients supplied by vertical mixing together with progressed daylight condition, springtime phytoplankton blooms were observed, which was responsible for the depletion of inorganic nutrients in surface water column. Low nutrients concentration in bottom water of the central Yellow Sea (Stn. D9; nitrate: <2 ${\mu}$M, phosphate: <0.3 ${\mu}$) was associated with the entrance of YSWC which is characterized by high temperature and salinity. Influenced by runoff and vertical tidal mixing, CCW with high nutrient concentrations probably associated with China and Korea coastal waters with high nutrients concentration. For the local scale of inorganic nutrient distribution, nutrient transfers from coast to central areas were limited due to restriction imposed by tidal fronts (Stn. D6) and thus affected the horizontal nutrient profiles. Relatively high phytoplankton biomass was observed in the tidal front (Chl-${\alpha}$=12.38 ${\mu}$gL$^{-1}$) during the study period. Overall, the springtime nutrient distribution patterns in the Yellow Sea appeared to be affected by: (1) Large-scale influx of YSWC with low nutrient concentrations and CCW with high nutrient concentrations influenced by Korea and China coastal waters; (2) vertical mixing of water mass and phytoplankton distribution; and (3) local-scale tidal front as well as phytoplankton blooms alongthe tidal front.

  • PDF

Chemical Mass Balance of Materials in the Keum River Estuary: 1. Seasonal Distribution of Nutrients (금강하구의 물질수지: 1. 영양염의 계절적 분포)

  • Yang, Jae-Sam;Jeong, Ju-Young;Heo, Jin-Young;Lee, Sang-Ho;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.71-79
    • /
    • 1999
  • As part of an on-going project investigating flux of materials in the Keum River Estuary, we have monitored seasonal variations of nutrients, suspended particulate matter (SPM), chlorophyll, and salinity since 1997. Meteorological data and freshwater discharge from the Keum River Dike were also used, Our goal was to answers for (1) what is the main factor for the seasonal fluctuation of nutrients in the Keum River Estuary? and (2) are there any differences in nutrient distributions before and after the Keum River Dike construction? Nitrate concentrations in the Keum River water were kept constant through the year. Whereas other nutrients varied with evident seasonality: high phosphate and ammonium concentrations during the dry season and enhanced silicate contents during the rainy season. SPM was found similar trend with silicate. During the rainy season, the freshwater discharged from the Keum River Dike seemed to dilute the phosphate and ammonium, but to elevate SPM concentration in the Keum Estuary. In addition, the corresponding variations of SPM contents in the estuarine water affected the seasonal fluctuations of nutrients in the Estuary. The most important source of the nutrients in the estuarine water is the fluvial water. Therefore, the distribution patterns of nutrients in the Estuary are conservative against salinity. Nitrate, nitrite and silicate are conservative through the year. The distribution of phosphate and ammonium on the other hand, display two distinct seasonal patterns: conservative behavior during the dry season and some additive processes during the rainy days. Mass destruction of freshwater phytoplankton in the riverine water is believed to be a major additive source of phosphate in the upper Estuary. Desorption processes of phosphate and ammonium from SPM and organic matter probably contribute extra source of addition. Benthic flux of phosphate and ammonium from the sediment into overlying estuarine water can not be excluded as another source. After the Keum River Dike construction, the concentrations of SPM decreased markedly and their role in controlling of nutrient concentrations in the Estuary has probably diminished. We found low salinity (5~15 psu) within 1 km away from the Dike during the dry season. Therefore we conclude that the only limited area of inner estuary function as a real estuary and the rest part rather be like a bay during the dry season. However, during the rainy season, the entire estuary as the mixing place of freshwater and seawater. Compared to the environmental conditions of the Estuary before the Dike construction, tidal current velocity and turbidity are decreased, but nutrient concentrations and chance of massive algal bloom such as red tide outbreak markedly increased.

  • PDF

Temporal and Spatial Variability of Nutrients Variation in Bottom Layer of Jinhae Bay (진해만과 주변해역 저층 영양염의 시·공간적 변동 특성)

  • Choi, Tae-Jun;Kwon, Jung-No;Lim, Jae-Hyun;Kim, Seul-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.627-639
    • /
    • 2014
  • In respect of the nutrients cycling in coastal environment, regeneration in bottom layer is one of major source of nutrients. We analyzed the bottom water quality at the 14 stations during 9 years from 2004 to 2012 to investigate the characteristics of nutrients at bottom layer in Jinhae Bay. Concentrations of DIN, DIP and DSi showed the large seasonal variation and were higher in summer. Especially, average concentrations of these nutrients were two times higher in hypoxic season than in normoxic season. In summer, high concentrations of DIN, DIP and DSi caused by regeneration were common feature, but spatial distribution of DSi differ from that of DIN and DIP. DIN and DIP were higher in Masan Bay, while DSi was higher in Masan Bay as well as in center of Jinhae Bay. In comparison with DIN and DIP, DSi was significantly affected by nutrients regeneration at bottom layer in whole season. According to time series analysis, DIN concentration was decreased from approximately $14{\mu}M$ to $6{\mu}M$. This result induce that Si:N ratio at bottom layer in Jinhae Bay changed from approximately 1 to 3.

Adaptations and Physiological Characteristics of Three Chenopodiaceae Species under Saline Environments (명아주과 3종 식물의 염 환경에 대한 적응특성의 비교)

  • 송승달;김진아;추연식;배정진;김인숙;추보혜;이인중
    • The Korean Journal of Ecology
    • /
    • v.25 no.2
    • /
    • pp.101-107
    • /
    • 2002
  • Three species of Chenopodiaceae, i.e. Suaeda japonica, Salicomia herbacea, Beta vulgaris var. cicla, were investigated to compare the physiological characteristics through inoic balances and osmoregulations under different environmental salt gradients. Plats were harvested in two weeks from treatments with salt gradients (0, 50, 100, 200 and 400 mM NaCl) and mineral nutrition gradients(1/1, 1/5, 1/10 dilutions of Hoagland solution). Plants were analyzed for growth responses, ionic balances, osmolalities, conductivities, glycinebetaine and proline contents quantitatively. Three plants of Chenopodiaceae accumulated slats into tissues unlike some salt sensitive species, and showed unique adaptation patterns to overcome saline environments, i.e. strong growth stimulation for Salicomia herbacea, growth negative tolerance for Suaeda japonica, and growth positive tolerance for Beta vulgaris var. cicla. The absorption of inorganic Ca/sup 2+/ ions was inhibited remarkably due to the excess uptake of Na+ with increasing salinity. The K+ content in plants was significantly reduced with increasing salinity. Total nitrogen content was reduced as mineral nutritions and salinity increased. Conductivity and osmolality increased with increasing salinity regardless of mineral nutritions. The ranges of glycinebetaine and proline contents were 0.2∼2.5 μM/g plant water and 0.1∼0.6μM/g plant water, respectively.

Nutrients and Particulate Organic Matter in Asan Bay (아산만의 영양염 및 입자성 유기물)

  • MOON Chang-Ho;PARK Chul;LEE Sung Yong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.173-181
    • /
    • 1993
  • Seasonal distributions of nutrients and particulate organic matter were investigated in Asan Bay, Korea. Most of nutrients were high in August and low in February. The atomic ratios of inorganic nitrogen to phosphorous were close to Redfield ratio except in May when the ratio was 24.8. In May, nutrient concentrations except phosphorous decreased with salinity until $31.5{\sim}32.0%0$, but the concentrations increased again with salinity, impling that there were nutrient input sources within the estuary. Howerer, significant inverse relationships between nutrients and salinity in August suggest that nutrient sources were river discharge. Maximum chlorophyll a concentrations occurred in May. Relatively low ratios of $R_b$ to $R_a$($R_b$: fluorescence before acidification; $R_a$: fluorescence after acidification) during the study periods indicate that phytoplankton were not in good physiological condition. Relatively low ratio of particulate biogenic silica(PBSi) to particulate organic carbon(POC) and high ratios of PBSi and POC to chlorophyll a during the study periods suggest input of non-living detrital PBSi and POC from bottom in Asan Bay, where strong tidal mixing occurs.

  • PDF

Assessment for Production of Organic Matter in the Wando Costal Area. (완도해역에서 유기물의 생산량 평가)

  • Kim Woo-Hang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.3 s.26
    • /
    • pp.165-170
    • /
    • 2006
  • In this study, organic matters production was calculated with long term data in Wando costal area where was selected for non influent of fresh water. The objective of this study was to evaluate relationship between nutrients and phytoplankton and, between phytoplankton and organic matter. The result of DIN was the highest with 0.138 mg/L in winter season and the lowest with 0.052 mg/L in summer season. Similarly, DIP was shown to be 0. 017 mg/L in winter and 0.011 mg/L in summer. Limiting nutrient was revealed with nitrogen in Wando costal area. Specially in summer season, nitrogen limitation was the greatest with 10.5 of N/P ratio. Chl. -a was increased 80%, 108% in spring and summer compare with winter. COD was the lowest with 0.84 mg/L in winter and the highest with 1.10 mg/L in summer. The interrelation between nutrients and Chl. -a was high. Relationship $coefficient(r^2)$ were 0.93(P<0.05), 0.89(P <0.05) between DIN and Chi. -a, DIP and Chl. -a. This results suggest dissolved nutrients might be utilized at the production of phytoplankton. Also Relationship $coefficient(r^2)$ was 0.77(P<0.05) between Chl. -a and COD. COD production rate was calculated with regression equation. The COD production rate was 17% in winter and 36% in summer. It was revealed nutrients were decreased according to temperature increasing and then Phytoplankton and organic matter were increased. The Relationship of Nutrients, Chl. -a and COD was very high.

  • PDF

Evaluation of the Relationship between Nutrients and Phytoplankton; and Phytoplankton and Organic matter (영양염과 식물성플랑크톤 그리고 식물성플랑크톤과 유기물의 상관관계의 평가)

  • Kim, Woo-Hang
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.117-120
    • /
    • 2006
  • The objective of this study was to evaluate the relationship between nutrients and phytoplankton; and phytoplankton and organic matter. In order to examine the limiting nutrient for phytoplankton, Redfield ration was used and revealed nitrogen limitation. Nitrogen limitation was greatest with a 4.7 DIN/DIP ratio especially during the summer season. Chl.-a increase by 79% and 97% in spring and summer, respectively, compared to winter. COD was lowest with 0.84mg/l in winter and highest with 1.12mg/l in summer. The interrelationship between nutrients and Chl.-a was high. Relationship coefficient$(r^2)$ between DIN and Chl.-a, and DIP and Chl.-a were 0.93 and 0.89, respectively. This suggests Nutrients might be utilized at the increase of phytoplankton. Also, Relationship coefficient$(r^2)$ between Chl.-a and COD was 0.78. COD production rate was calculated with Regression Equation. The COD production rate was 25% in winter and 40% in summer.

  • PDF

해류제어 막구조 설치해역의 유동구조 특성(1)

  • 김현주;최학선;박용주;박병수
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.218-219
    • /
    • 2000
  • 바다목장화는 자연급이형 재배어업시스템이며, 해류제어 막구조물(Fig. 1)은 (1)어패류의 서식환경 조성 및 제공, (2)기초생산의 증대를 통한 고차 소비자의 위집과 생산 증대 및 (3)어류의 사료가 되는 저서생물의 증식 효과라는 직접적인 효과와 (4) 와류, 상승류에 수반된 유동변화, 음향발생 등에 의한 부차적인 집어효과를 가질 뿐 아니라 (5) 저층 영양염의 분산 소모를 통한 계절적 영양염의 집중부상에 의한 계절적 부영양화의 감소효과를 가지는 기능시설로서 중요한 증식시설이다(김과 류, 1997). (중략)

  • PDF

관절 연골세포에서 glucosamine sulfate가 미치는 영향

  • Im, Jeong-Eun;Jo, Yeo-Won;Cheon, Jong-Hui;Lee, Hyeon-Jeong;Jeong, Su-Il;Min, Byeong-Hyeon;Park, So-Ra
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 2004.05a
    • /
    • pp.122-122
    • /
    • 2004
  • 골관절염은 관절연골의 퇴행성 변화로 연골기질의 분해로 인하여 연골 강도와 cushion으로서의 능력이 감소되는 질환이다. 골관절염의 대부분 약물치료는 통증과 염증을 감소시키는 목적으로 사용되며, 근본적인 치료효과를 주는 약물은 현재까지 개발되어 있지 않다. 영양약학 제품에 대한 질병의 예방적, 치료 보조적 차원에서 인체에 대한 기초적인 생리활성의 중요성을 인식하게 됨으로써 그 역할이 중요하게 인식되고 있다. 특히, 골관절염 치료에 쓰이는 glucosamine은 proteoglycan (PG)와 glucosaminoglycans(GAGs)의 합성의 전구물질로서 연골세포 생성을 자극하며, 통증, 염증의 경감 및 진행과정을 억제시키고, 관절기능 회복을 촉진하는 것으로 알려져 있다. 그러나 glucosamine이 어떤 기전에 의해 관절연골세포에 직접적인 영향을 주는지 밝혀져 있지 않다. 본 연구에서는 glucosamine sulfate가 연골세포에 미치는 영향을 규명하고자 하였다.

  • PDF