본 논문은 동일한 대상물을 촬영한 영상을 합성하여 파노라마 영상을 생성하는 방법에 대하여 설명한다. 디지털 카메라의 보급으로 파노라마 영상에 대한 관심이 높아지면서 다양한 방법의 파노라마 영상의 제작 방법이 연구되고 있다. 본 논문에서는 크기 및 회전 불변 특징점을 활용하여 파노라마 영상을 합성하는 방법에 대해서 제안한다. 먼저, 입력 영상들에 대해서 특징점을 추출하고, RANSAC 알고리즘을 통해 추출된 특징점을 정합한다. 정합점을 이용하여 투영 변환식을 모델링하고, 모델링된 변환식을 통하여 영상을 정렬하여 파노라마 영상을 생성한다. 제안한 알고리즘은 SURF 특징점 추출 알고리즘을 적용하여 영상의 크기 및 회전 등의 기하학적 변형에 강인하며, 처리 속도도 향상하였다. 실험에서는 기존 Harris corner 검출기나 SIFT 알고리즘을 통해 검출한 특징과 제안한 알고리즘에서 사용된 SURF 알고리즘을 비교 분석 하였고, $640{\times}480$ 크기의 영상을 이용하여 제안한 알고리즘을 통해 파노라마 영상을 합성하였다. 그 결과 파노라마 영상의 합성에 소요되는 시간은 평균0.4초로 나타났고, 기존 알고리즘에 비하여 효율적인 것으로 나타났다.
발성하고 있는 입 주변에서 취득한 영상은 발성 음에 따라 특이적인 패턴을 나타낸다. 이를 이용하여 화자의 얼굴 하단에서 취득한 영상으로부터 발성 음을 인식하거나 합성하는 방법이 제안되고 있다. 본 연구에서는 심도 영상을 협력적으로 이용하는 영상 기반 음성합성 기법을 제안하였다. 심도 영상은 광학 영상에서는 관찰되지 않는 깊이 정보의 취득이 가능하기 때문에 평면적인 광학 영상을 보완하는 목적으로 사용이 가능하다. 본 논문에서는 음성 합성 관점에서 심도 영상의 유용성을 평가하고자 한다. 60개의 한국어 고립어 음성에 대해 검증 실험을 수행하였으며, 실험결과 객관적, 주관적 평가에서 광학적 영상과 근접한 성능을 얻는 것을 확인할 수 있었으며 두 영상을 조합하여 사용하는 경우 각 영상을 단독으로 사용하는 경우보다 향상된 성능을 나타내었다.
본 논문에서는 영상으로부터 생성된 깊이맵을 합성곱 신경망(CNN)으로 재생성하는 방법을 제안한다. 합성곱 신경망은 영상인식, 영상분류에 좋은 성능을 보여주는데, 이 기술을 깊이맵 생성에 활용하여 기 제작된 깊이맵 생성 기법을 간단한 합성곱 신경망으로 구현하고자 한다. 성능 실험에서는 10개의 비디오 세트에 제안 방법을 적용한 결과, 만족스러운 결과를 얻었다.
본 논문에서는 의료 영상 분류를 위한 심층 신경망 훈련에서 StyleGAN 합성 영상의 데이터 증강 효과를 분석한다. 이를 위해 흉부 X선 영상에서의 폐렴 진단과 복부 CT 영상에서의 간전이암 분류 문제에서 StyleGAN 합성 영상을 이용하여 VGG-16 심층 합성곱 신경망 훈련을 수행한다. 실험에서 분류 결과에 대한 정량적, 정성적 분석을 통해 StyleGAN 데이터 증강이 특징 공간에서 클래스 외곽을 확장하는 특성을 보이며, 이와 같은 특성으로 인해 실제 영상과의 적절한 비율을 통해 혼합했을 때 분류 성능이 개선될 수 있음을 확인하였다.
본 논문에서는 이미지(image) 합성을 하되 일반적인 환경이 아닌 바다. 호수 등을 포함하고 있는 영상에 다른 하나의 객체를 합성시키기 위한 물결 영상 기반 디지털 이미지 합성 프로세스를 제안한다. 즉 타겟(target) 이미지가 일반적 환경이 아닌 물결을 묘사한 영상인 경우 다른 객체 이미지를 합성시켜 타겟 이미지의 물결에 비춰진 객체의 모습이나 물 안에 있는 객체의 모습을 묘사하며 이를 위한 합성 알고리즘을 제안한다. 물결 부분에 이미지를 합성하기 위해 먼저 Shape-from-shading 기법을 사용하여 2차원 물결영상으로부터 3차원 정보를 추출하여 그 형상을 복원한다. 그리고 추출된 노말 정보를 적용하여 물결에 합성 될 영역을 알맞게 변형시킨다. 마지막으로 합성할 영역을 타겟 이미지의 물결에 옮겨놓는 합성과정을 수행한다.
실제 영상과 가상의 오브젝트 또는 가상의 환경에 오브젝트를 합성하는 경우 등 사실적인 합성을 결과를 얻기 위해서는 실제 환경과 같은 배경 영상의 정확한 광원 정보가 필요하다. 본 논문에서는 실내 환경을 배경으로 영상을 합성 하는 과정에 필요한 광원정보를 카메라와 Light Probe를 이용하여 촬영된 단일 영상으로부터 추정하는 기법을 제안한다. 실내에 존재하는 광원들은 정확한 위치정보를 알 수 없는 실외환경에서와 달리 제한된 공간의 원점으로부터 3차원 공간에 위치한 좌표로 나타낼 수 있다. 광원을 추정하기 위해 먼저 실내 공간에 반사도가 높은 Light Probe를 위치하고 디지털 카메라의 적정 노출을 이용하여 광원 추정에 사용할 영상을 획득한다. 광원으로 존재하는 오브젝트의 경우 짧은 노출시간에도 카메라의 영상에 획득된다. 그렇기 때문에 단일 영상에서 광원의 영역을 추정하기 위해 영상처리를 통해 노출 시간을 짧게 하여 촬영한 영상과 비슷하게 밝은 영역만 표현되도록 처리를 한다. 전 처리된 영상으로부터 밝은 영역과 어두운 영역으로 구분을 하고 밝은 영역으로부터 광원의 정보를 추정한다. 추정된 광원들은 실제 렌더링에 곧바로 적용이 가능하며, 이를 통해 배경에 적합한 렌더링 결과를 얻을 수 있다.
본 논문에서는 형태 정합 및 포아송 방정식을 기반으로 객체와 배경과의 이음매가 없는 효율적인 동영상 합성 기법을 제안한다. 동영상 합성 기법은 영상 분할 과정과 영상 조합 과정으로 구성된다. 영상 분할 과정에서는 먼저 첫번째 프레임에 대해 사용자가 3 영역 지도를 설정한 후, 그랩 컷(grab cut) 알고리즘을 수행한다. 그리고 객체와 배경의 색상, 밝기, 텍스쳐 등이 유사할 경우 영상 분할의 성능이 감소될 수 있음을 감안하여, 현재 프레임과 이전 프레임 객체들 간의 형태 정합을 통해 현재 프레임에서 영상 분할된 객체를 보정한다. 영상 조합 과정에서는 포아송 방정식을 이용하여 객체와 목표 동영상의 배경이 서로 이음매 없이 조합되도록 하며, 또한 사용자가 설정한 움직임 경로에 따라 객체를 배치한다. 모의실험을 통해 제안된 방법이 합성된 동영상의 자연성 뿐만 아니라 수행 시간 면에서 우수함을 알 수 있었다.
본 연구에서는 디지털 단층합성 엑스선 영상의 화질특성을 개선하기 위해 TV-압축센싱 기반 영상복원 기법을 제안한다. 제안된 영상복원 기법의 유효성을 검증하기 위해 우선 관련 영상복원 알고리즘을 구현하였으며, 이를 이용하여 관련 시뮬레이션 및 실험을 함께 수행하였다. 실험을 위해 일반 x-선관($90kV_p$, 6 mAs), CMOS형 평판형 검출기($198{\mu}m$ 픽셀크기)로 구성된 실험장치를 구성하였으며, 제한된 각도 $60^{\circ}$도에서 $2^{\circ}$ 간격으로 총 51장의 투상영상을 획득하고 제안된 알고리즘으로 영상복원을 수행한 후 필터링 역투사법(FBP)을 사용하여 디지털 단층합성 영상을 구현하였다. 본 연구에서 수행된 결과에 의하면, 제안된 영상복원 기법은 일반 엑스선 영상 및 디지털 단층합성 영상의 흐린 영상화질을 선명하게 개선하고 또한 디지털 단층합성 영상의 깊이 분해능을 향상시키는 이점이 있음을 확인함으로써 기존 디지털 단층합성 영상의 화질을 크게 개선할 수 있을 것으로 전망된다.
본 논문에서는 영상의 RGB 정보와 화소단위의 8비트 깊이 정보를 이용하여 현재의 영상과 스테레오 쌍이 되는 가상의 우 영상을 생성한다. 이 과정에서 깊이 정보를 시차 정보로 변환하고, 생성된 시차정보를 이용하여 우 영상을 생성하게 된다. 또한 스테레오 영상을 합성한 후 회전(rotation)과 이동(translation) 등의 기하학적 변환을 이용하여 관찰자의 위치를 고려한 다시점 스테레오 영상을 합성하는 기법을 제안하고, 깊이 정보와 시차 정보와의 관계를 분석하여 화소 단위의 실시간 처리를 위한 LUT(look-up table) 방식의 고속 기법도 제안한다. 실험 결과 SD급 영상의 경우 8비트 깊이 정보만을 가지고 11시점의 스테레오 영상을 실시간으로 합성할 수 있다.
본 논문에서는 일반적인 합성구경기법에 대한 통합 모형을 제시하고 수학적인 해석을 통하여 합성구경 기법들에 대한 초음파 빔패턴의 단일 표현식을 유도하였다. 이 결과를 이용하여 기존의 합성구경 기법들에 대한 성능을 분석하고 비교하였으며, 선형주사 영상에 적합한 새로운 합성구경 기법을 제안하였다. 제안된 방법은 모든 영상점에서 양방향 동적 집속이 가능하며, 이를 실제 영상에 적용하여 의료용 초음파 B-모드 영상의 해상도를 획기적으로 개선할 수 있다. 제안된 방법에 의하여 집속된 초음파 빔패턴은 기존의 방식과 비교하여 주엽의 폭이 절반으로 감소하고 측엽의 크기는 유사하다. 컴퓨터 모사실험을 통하여 본 논문의 해석결과와 제안된 합성구경 기법의 타당성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.