• 제목/요약/키워드: 영상 필터링

검색결과 854건 처리시간 0.019초

오피니언 분류의 감성사전 활용효과에 대한 연구 (A Study on the Effect of Using Sentiment Lexicon in Opinion Classification)

  • 김승우;김남규
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.133-148
    • /
    • 2014
  • 최근 다양한 정보채널들의 등장으로 인해 빅데이터에 대한 관심이 높아지고 있다. 이와 같은 현상의 가장 큰 원인은, 스마트기기의 사용이 활성화 됨에 따라 사용자가 생성하는 텍스트, 사진, 동영상과 같은 비정형 데이터의 양이 크게 증가하고 있는 것에서 찾을 수 있다. 특히 비정형 데이터 중에서도 텍스트 데이터의 경우, 사용자들의 의견 및 다양한 정보를 명확하게 표현하고 있다는 특징이 있다. 따라서 이러한 텍스트에 대한 분석을 통해 새로운 가치를 창출하고자 하는 시도가 활발히 이루어지고 있다. 텍스트 분석을 위해 필요한 기술은 대표적으로 텍스트 마이닝과 오피니언 마이닝이 있다. 텍스트 마이닝과 오피니언 마이닝은 모두 텍스트 데이터를 입력 데이터로 사용할 뿐 아니라 파싱, 필터링 등 자연어 처리기술을 사용한다는 측면에서 많은 공통점을 갖고 있다. 특히 문서의 분류 및 예측에 있어서 목적 변수가 긍정 또는 부정의 감성을 나타내는 경우에는, 전통적 텍스트 마이닝, 또는 감성사전 기반의 오피니언 마이닝의 두 가지 방법론에 의해 오피니언 분류를 수행할 수 있다. 따라서 텍스트 마이닝과 오피니언 마이닝의 특징을 구분하는 가장 명확한 기준은 입력 데이터의 형태, 분석의 목적, 분석의 결과물이 아닌 감성사전의 사용 여부라고 할 수 있다. 따라서 본 연구에서는 오피니언 분류라는 동일한 목적에 대해 텍스트 마이닝과 오피니언 마이닝을 각각 사용하여 예측 모델을 수립하는 과정을 비교하고, 결과로 도출된 모델의 예측 정확도를 비교하였다. 오피니언 분류 실험을 위해 영화 리뷰 2,000건에 대한 실험을 수행하였으며, 실험 결과 오피니언 마이닝을 통해 수립된 모델이 텍스트 마이닝 모델에 비해 전체 구간의 예측 정확도 평균이 높게 나타나고, 예측의 확실성이 강한 문서일수록 예측 정확성이 높게 나타나는 일관적인 성향을 나타내는 등 더욱 바람직한 특성을 보였다.

MODIS 시계열 위성영상을 이용한 한라산과 지리산 구상나무 식생 변동 추세 분석 (Trend Analysis of Vegetation Changes of Korean Fir (Abies koreana Wilson) in Hallasan and Jirisan Using MODIS Imagery)

  • 추민기;유철희;임정호;조동진;강유진;오현경;이종성
    • 대한원격탐사학회지
    • /
    • 제39권3호
    • /
    • pp.325-338
    • /
    • 2023
  • 구상나무는 한반도 아고산대 생태계에 미치는 기후변화 영향 평가에 중요한 환경지표종이다. 하지만 아고산대의 특성상 해발고도 약 1,000 m 이상에 주로 분포한 구상나무를 주기적으로 현장 조사하는 것은 많은 인력을 요구한다. 따라서 본 연구는 주기적인 관측이 가능한 원격탐사 자료를 활용하여 한라산과 지리산을 대상으로 2003년부터 2020년까지의 9월 Moderate Resolution Imaging Spectroradiometer (MODIS)의 normalized difference vegetation index (NDVI)와 지표면 온도 그리고 Global Precipitation Measurement (GPM)Integrated Multi-satellitE Retrievals for GPM의 강수량 자료를 이용해 구상나무의 식생 변동 및 환경변수와의 연관성을 분석하였다. 2003년과 비교하여 2020년에 구상나무 서식지역의 식생지수 감소를 확인하였으며, 이를 바탕으로 구상나무 생육 우수 지역과 구상나무 고사율이 높은 지역을 선별하였다. 이러한 지역들에 대한 장기간 식생지수 시계열 분석 결과, 한라산과 지리산 모두 고사지역에서 식생지수가 감소하는 경향을 보였다(한라산: -0.46, 지리산: -0.43). 또한 Hodrick-Prescott 필터를 통해 추출된 식생지수와 지표면온도 그리고 강수량의 추세변화를 통해 구상나무의 장기간 변동을 분석한 결과, 한라산의 경우 지표면온도가 증가하고 강수량이 감소하는 시기에 구상나무 생육 우수 지역과 구상나무 고사율이 높은 지역의 식생지수 차이가 증가하였다. 이는 온도 상승과 강수량 감소가 한라산 구상나무 생육쇠퇴에 영향을 미치는 것으로 해석된다. 반면 지리산은 장기적으로 구상나무 고사지역의 장기적인 식생지수 감소 추세를 보여주었으나, 식생지수 변화 패턴이 지표면온도와 강수량과는 유의미한 상관성을 발견하지 못하였다. 추후 지표면 온도와 강수량 외에 선행연구에서 구상나무 생육쇠퇴와 연관이 있다고 알려진 환경인자(토양수분, 일사량, 강풍 등)에 대한 추가 분석이 필요하다. 본 연구를 통해 위성 자료로 구상나무 생태계의 장기간 모니터링 및 환경 변수들의 상관성 분석에 대한 가능성을 제시하였다. 본 연구를 토대로 위성 기반 모니터링이 구상나무의 생태학적 연구에 어떻게 활용될 수 있는지에 대한 이해를 높이는데 도움이 될 것으로 기대한다.

Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구 (Comparative study of flood detection methodologies using Sentinel-1 satellite imagery)

  • 이성우;김완엽;이슬찬;정하규;박종수;최민하
    • 한국수자원학회논문집
    • /
    • 제57권3호
    • /
    • pp.181-193
    • /
    • 2024
  • 기후변화에 의해 발생하는 대기 불균형은 강우량의 증가로 이어지고, 침수 발생 빈도가 증가함에 따라 이를 탐지할 수 있는 기술의 필요성이 증가하고 있다. 침수 피해를 최소화하기 위해 지속적인 모니터링이 필요하며, 날씨의 영향을 받지 않는 합성개구레이더(Synthetic Aperture Radar, SAR) 영상을 활용하여 침수지역을 탐지하였다. 관측된 데이터는 median 필터를 통해 노이즈를 감소시키는 전처리 과정을 진행하였으며, 객체 탐지 기법을 통해 수체와 비수체를 분류하여 각 기법의 침수탐지 활용성을 평가하고자 하였다. 본 연구에서는 Otsu 기법과 SVM 기법을 통해 수체 및 침수 탐지를 수행하였으며, Confusion Matrix를 통해 전체적인 모델의 성능을 평가하였다. Otsu 기법은 수체와 비수체의 경계를 구분하는데 적합함을 보였으나, 혼합물의 영향을 받아 오탐지의 비율이 높게 나타났다. 반면, SVM 기법을 사용한 경우, 오탐지 비율이 낮고 혼합물에 의한 영향에 민감하지 않은 것으로 관측되었다. 이에 따라 침수 상태를 제외한 다른 조건에서 SVM 기법의 정확도가 높게 나타났다. Otsu 기법이 침수 조건에서 SVM 기법보다 다소 높은 정확도를 보였지만, 정확도의 차이가 5% 미만임을 확인할 수 있었다(Otsu: 0.93, SVM: 0.90). SVM 기법이 Otsu 기법보다 침수 전, 침수 후의 조건에서 정확도 차이가 최대 15% 이상 발생하여 수체 및 침수탐지에 더 적합하게 나타났다(Otsu: 0.77, SVM: 0.92). 이러한 결과는 SVM 기법이 수체 및 침수탐지에서 효과적으로 활용될 수 있음을 시사하며, 미래의 수재해 탐지 시스템에 적용될 때 유용한 정보를 제공할 수 있을 것으로 기대된다.

초분광 영상을 이용한 봄감자의 잎 Na 함량 예측 모델 개발 (Development of Prediction Model for the Na Content of Leaves of Spring Potatoes Using Hyperspectral Imagery)

  • 박준우;강예성;유찬석;장시형;강경석;김태양;박민준;백현찬;송혜영;전새롬;이수환
    • 한국농림기상학회지
    • /
    • 제23권4호
    • /
    • pp.316-328
    • /
    • 2021
  • 본 연구에서는 간척지의 염분 모니터링을 위한 다중 분광 센서를 개발하기 위해 400~1000 nm 초분광센서를 사용하여 봄 감자의 잎 Na 함량 예측 모델을 구축하고자 하였다. 관개조건은 표준, 한해, 염해(2, 4, 8 dS/m)로, 관수량은 증발량을 기준으로 산정하였다. 영양생장기, 괴경형성기, 괴경비대기에 각각 관개를 시작한 후 1주와 2주 후에 잎의 Na 함량을 측정하였다. 잎의 반사율은 10nm 파장 간격을 기준으로 5 nm에서 10nm, 25nm, 50nm FWHM (full width at half maximum)으로 변환되었다. PLS-VIP를 사용하여 봄 감자 잎의 Na 함량에 따른 염분 피해 수준을 예측하기 위한 10개의 밴드비가 선택되었다. 선택된 10개의 밴드비 중 가중치가 가장 낮은 순서대로 밴드비를 하나씩 제거하면서 MLR모델을 추정하였다. 모델의 성능은 R2, MAPE 뿐만 아니라 밴드비의 수, 다중 분광센서를 작게 만들기 위한 최적의 FWHM 수로 비교하였다. 1, 2주차의 영양생장기, 괴경형성기와 2주차의 괴경비대기에서 봄 감자의 잎 Na 함량을 예측하기 위해서는 25 nm의 FWHM을 사용하는 것이 유리하였다. 선택된 밴드필터는 430/440, 490/500, 500/510, 550/560, 570/580, 590/600, 640/650, 650/660, 670/680, 680/690, 690/700, 700/710, 710/720, 720/730, 730/740 nm로 Red 및 Red-edge 영역에서 15개 밴드비가 선택되었다.