문자 인식 및 영상 인식 분야의 대부분의 연구들은 이진영상(binary image)을 바탕으로 이루어진다. 하지만, 입력영상에서 보다 많은 정보를 얻기 위해 명도영상(grayscale image) 으로 입력받아 필요한 정보를 추출한후 이진영상으로 변환하여 처리하는 방법도 많이 사용되고 있다. 이런 경우, 명도영상으로부터의 보다 깨끗한 이진영상의 획득 여부는 시스템의 성능과도 밀접한 관계가 있다. 본 논문에서는 기존의 대부분의 이진화 방법과는 달리, 실제 이진화를 수행하기 이전에 여러 가지 필터링 기법을 사용하여 영상의 질을 개선시키는 영상개선기법을 사용한후, 기존의 이진화방법을 사용하여 명도영상을 이진화하는 방법을 제안하고자 한다. 영상의 질을 개선시키기 위해서 BM 필터링, 경게선 개선 필터링, Erosion필터링 방법을 사용하였으며 , 기존의 이진화방법으로는 전역적 이진화 방법중 하나로써 클래스간 분산을 이용한 Ostu 방법[1]을 사용하였다. 다양한 종류의 문서를 대상으로 실험하였는데 평가실험에 사용된 영상은 문서 특성에 따라 균일하지 않은 배경을 가진 영상, 순수하게 텍스트로만 구성된 영상, 선성분이 많으며 명도값이 다양하게 나타나는 영상, 텍스트와 선성분이 함께있는 영상 등 크게 4가지 부류로 구분하였고, 평가대상 영상에 대해 매개변수의 개수, 끊어진/잃어버린 /뭉게진 물체가 적은 정도, 실행속도, 매개변수 결정의 용이성, 잡영이 적은 정도를 평가기준으로 선정한 후, 정량적인 평가가 어려운 항목에 대해서는 9개의 등급으로 나누어 이진화 된 영상의 특성을 분석, 평가하였다.
본 논문에서는 인터넷 및 인터넷 저장 공간에 제한없이 유통되고 있는 유해동영상을 필터링하기 위해 유해동영상에 포함된 특정 소리를 이용한 유해 동영상 필터링 시스템을 제안한다. 이를 위하여 소리의 특성을 잘 표현할 수 있는 Gaussian Mixture Model을 이용하였으며, 필터링 대상 데이터와 소리모델과의 유사도를 계산하기위해 프레임단위 유사도 추정을 이용하였다. 또, 실시간 처리를 위하여 비교대상 데이터의 수를 줄임으로서 실시간 처리가 가능한 프루닝 방법을 적용하였으며, 고정도의 구별 성능을 위하여 기존 화자식별에서 우수한 성능을 보였던 MWMR 방법을 적용하였다. 식별실험결과, 일반 영상과 유해 영상의 기준인 전체프레임 대비 유사도 높은 프레임의 비를 50%로 설정한 경우, 판별 오류율은 6.06%였으며, 프레임 비의 기준이 60%인 경우, 오류율은 3.03%를 나타내어 소리를 이용한 유해동영상 필터링 시스템이 효과적으로 일반영상과 유해영상을 구별할 수 있는 것을 확인하였다.
본 논문에서는 딥러닝 기반 특징점 필터링 방법을 이용한 원격 탐사 영상에 대한 영상 정합 (Image Registration) 고속화 방법을 제안한다. 기존의 특징 기반 영상 정합 방법의 복잡도는 특징 매칭 (Feature Matching) 단계에서 발생한다. 이 복잡도를 줄이기 위하여 본 논문에서는 특징 매칭이 영상의 인공구조물에서 검출된 특징점으로 매칭되는 것을 확인하여 특징점 검출기에서 검출된 특징점 중에서 인공구조물에서 검출된 특징점만 필터링하는 방법을 제안한다. 딥러닝 기반 특징점 필터링은 영상 정합을 위하여 필수적인 특징점을 잃지 않으면서 그 수를 줄이기 위하여 인공구조물의 경계와 인접한 특징점을 보존하고, 축소한 영상을 사용하며, 영상 분할(Image Segmentation) 방법의 결과에서 생기는 영상 패치 경계의 잡음을 제거하기 위하여 영상 패치를 중복하여 잘라 냄으로써 정합 속도와 정확도를 향상시킨다. 영상 정합 고속화 방법을 의 성능을 검증하기 위하여 아리랑 3 호 위성 원격 탐사 영상을 사용하여 기존 특징점 추출 방법과 속도와 정확도를 비교하였다. 딥러닝 기반 영상 정합 방법을 기준으로 하여 비교하였을 때 특징점의 수를 약 82% 감소시키면서 속도를 약 9.17 배 향상시켰지만 정확도가 0.985 에서 0.855 으로 저하되었다.
본 논문에서는 새로이 시작된 비디오 압축 표준인 VVC(Versatile Video Coding)의 인-루프(in-loop) 필터링을 위한 CNN 구조를 제안한다. 제안하는 CNN 구조는 복호화된 영상을 입력으로 하고 원본 영상과 복호화된 영상의 오차를 손실함수로 사용하여 학습을 진행한다. 또한, 비디오 부호화에서의 다양한 크기의 CU(Coding Unit)를 고려한 다양한 크기의 컨볼루션 필터를 사용하여 특징을 추출하는 구조에 기반하고 있다. 실험을 통하여 제안한 CNN 기반의 필터링이 VVC 의 시험모델인 VTM(VVC Test Model)의 인-루프 필터링의 성능을 개선할 수 있음을 확인하였다.
본 논문에서는 인체의 머리 부분을 촬영한 의료 영상에서 뇌 영역만을 분할하는 방법에 대해 제시하고자 한다. 뇌의 해부학적 구조 및 기능적 이상 부위를 파악할 경우에 영상 내에 함께 보여지는 두개골과 뇌척수액 등을 제외한 대뇌피질 영역을 분할하면 보다 효과적인 정보 분석 및 진단이 가능하게 된다. 본 시스템에서는 3단계 알고리즘을 제시한다. 첫 번째 단계에서는 영상 내에 존재하는 잡음을 제거하기 위한 필터링이고, 두 번째 단계에서는 필터링된 결과에 대한 영상분할을 수행하는 것이다 이 때 정확한 결과 도출을 위하여 사용자의 인터렉션이 들어가게 된다. 세번째 단계에서는 형태학적 방법을 이용하여 분할 결과를 보완한다. 본 연구를 위한 실험에는 자기 공명 촬영 영상(MRI: Magnetic Resonance Imaging), 단일 광전자 방출 단층 촬영영상(SPECT: Single Photon Emission Computed Tomography), 양전자 방출 단층 촬영영상(PET: Positron Emission Tomography) 등을 사용하였다. 본 시스템에서는 다양한 모달리티의 뇌 영상에서 대뇌피질 부분을 정확하게 영상 분할함으로써 뇌의 구조적 이상을 판단하기 위한 해부학적 정보 분석을 가능케 하고 있다. 뿐만 아니라 뇌 질환에 대한 정확한 진단 시뮬레이션도 가능하게 하고자 한다.
전처리 필터링은 카메라로부터 들어오는 잡음을 제거하여 부호화 효율을 높여주기 때문에, 전처리 과정의 효과적인 구현은 동영상 압축에서 중요한 연구분야 중의 하나였다 본 논문에 근사화된 일반화 위너 필터링(approximated generalized Wiener filtering)과 이차원 DCT의 분해(factorization)를 바탕으로, 부호화기 내부에서 수행되는 효과적인 전처리 필터링 방법을 제안한다 제안한 전처리 필터링은 원 영상 블록 (original image block)과 움직임 보상된 차 영상 블록(motion-compensated error block)의 DCT계수들에 적절한 값들을 곱하는 것으로 수행된다 전처리 필터링이 동영상 압축기에 깊이 파묻혀 있지만, 전처리 과정으로 인한 연산량의 증가는 전체 부호화 과정에 비해 크지 않으며, 전통적인 블록 부호화 기법의 틀은 그대로 유지한다 간결한 구조와 연산에도 불구하고 제안한 방법은 잡음이 있는 동영상에 대해서 좋은 필터링 및 부호화 성능을 나타낸다.
본 논문에서는 영상신호를 필터링 하기 위해 필요한 현실적인 수학적 모델을 제시한다. 1차원 신호 뿐 아니라 2차원 또는 다차원 신호처리 및 분석에서 필터는 영상처리, 컴퓨터 비전, 패턴 인식 등의 다양한 분야에서 근본적이고 중요한 과정을 수행한다. 일반적인 신호처리에서 신호를 주파수 영역에서 해석할 경우 1차원 신호 영역에서의 이상적인 (저역통과) 필터는 직사각형 형태를 가지고 있듯이, 2차원 신호의 이상적인 필터는 원 형태를 가지고 있다. 본 논문에서는 주파수 영역에서 활용할 수 있는 실용적이고 효율적인 다각형 형태의 영상 필터 모델을 제안한다. 본 논문은 2차원 영상을 필터링 하기 위해 원형 필터를 사용하는 대신 육각형 형태의 필터를 모델링하여 적용한다. 이것은 무선 통신 시스템에서의 주파수 재사용 개념을 도입함으로서, 영상 필터링에서도 주파수 대역을 효율적으로 사용하기 위함이다. 본 논문에서 제시한 육각형태의 필터를 활용한 영상 필터링의 시뮬레이션 결과를 제시하고, 성능을 PSNR로 계산한 결과 제안한 방법이 이상적인 필터의 대안으로서 가능함을 보인다.
관상동맥 폐색증 환자들에 대해서 시술되는 stent 삽입 시술이나 관상동맥 우회로 시술 중에는 X-ray 등의 조영 영상이 시술의 기준이 되고 있다. 따라서 조영 영상에서 혈관을 빠르게 인식하는 것은 정확하고 효과적인 시술의 필수 조건이다. 이러한 시술 중 빠르고 정확한 혈관 인식을 위하여 본 논문에서는 심혈관 조영 영상으로부터 관상동맥의 형태를 자동적으로 영상분할하기 위한 방법을 제안한다. 우선 조영 영상에서 혈관을 분명하게 인식하기 위해서는 잡음을 제거하기 위한 필터링이 필요한 데, Anisotropic diffusion을 이용한 필터링은 이미지 내 물체의 경계선을 보존하고, 영역 내의 잡음을 제거하는 데 효과적이다. 정확한 영상분할을 수행하기 위해서는 대부분의 경우 사용자가 영상 내에 관심 영역을 지정하는 인터렉션이 필요하지만 이는 사용자에게 불편함을 줄 수 있다. 따라서 이러한 번거로움을 최소화하고, 정확한 결과를 유도하기 위해서 자동 씨드 영역 추출 알고리즘을 제안한다. 따라서 조영 영상에 필터링을 적용한 후 추출된 씨드 영역과 추출된 에지와 Adaptive region-growing을 복합적으로 사용하는 영상분할을 수행하게 되면 보다 효과적인 관상동맥 영상 분할의 결과를 얻을 수 있었다.
최근에 해상도의 손실없이 신호대잡음비를 개선시킬 수 있는 적응 템플릿 필터링이 제안되었다. 적응 템플릿 필터링은 다중 템플릿들 중에서 현재 복셀의 주변 구조와 가장 잘 매칭이 되는 템플릿을 선택하여 적응필터 링을 적용하는 방법이다. 적응 템플릿 필터링을 자기공명영상에 적용할때 기존의 필터링 방법들에 비하여 향상된 결과를 얻을 수 있으나, $T_1$ 영상과 같이 비교적 작은 동적 범위를 가진 영상에서는 에지에서 계단모양의 artifact가 발견되곤 한다. 이것은 자기 공명영상에서 복셀의 부분적인 볼륨 효과에 기인하는 것으로 여러 조직의 성분을 포함하고 있는 경계면의 복셀들에 적응 템플릿 필터링이 적용될 경우 다중성분을 가진 복셀들의 그레이레벨이 인접한 단일성분의 그레이레벨 값에 가까워져 에지가 강조되기 때문이다 본 논문에서는 다중 성분을 갖는 복셀들을 선별하여 이들에 대해서는 가장 큰 크기의 템플릿을 할당함으로써 artifact를 제거하는 방법을 제안하였다. 제안한 방법을 $T_1$ 자기공명영상과 팬텀 영상에 적용한 결과 에지 artifact가 사라지는 것을 확인할 수 있었으며, 최대 신호대잡음비 면에서도 향상된 결과를 얻을 수 있었다.
본 논문에서는 기존의 퍼지 필터링 알고리즘의 문제점을 개선한 퍼지 필터링 기법을 제안한다. 제안된 퍼지 필터링 알고리즘은 컬러 영상에서 R, G, B 채널을 각각 분리한다. 분리된 각 채널에서 마스크 정보를 추출하여 채널에 대한 평균값과 중간값의 명암도를 제안된 퍼지 기법의 소속 함수에 적용하여 소속도를 구한 뒤, 추론 규칙에 적용한다. 그리고 R, G, B 각각의 소속도 값을 이용하여 잡음 가능성 여부를 판별한다. 제안된 퍼지 기법에서 소속 함수 구간은 세 개 구간으로 설정하였다. 잡음이라고 판단되는 경우에는 그 잡음 정도에 따라 중간값이나 평균값을 해당 픽셀 값으로 설정하여 잡음을 제거한다. 제안된 기법을 컬러 영상에 적용한 결과, 제안된 기법이 기존의 퍼지 필터링 기법보다 잡음 제거에 있어서 효과적인 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.