동영상에서 특정 물체를 추적하기 위하여 여러 가지 알고리즘이 적용된다. 그 중에서 특징점을 추출하고 정합하여, 움직이고 있는 물체를 추적하는 방법을 소개한다. 특징점을 추출하는 방법 중에서 에지정보를 이용하는 방법과 직접 이미지에 접근하는 방식이 있다. 본 논문에서는 물체의 에지정보를 이용하여 특징점을 추출하는 기법을 제안한다. 널리 이용되고 있는 Canny Edge Detection(1) 알고리즘 이용, 에지를 얻게 되는데, 여기서 특징점 추출에 오류를 발생시킬 수 있는 경우에 대비하여 에지를 보정하고, 결과의 에지에서 특징 점을 추출한다. 보정된 에지정보에서 시작점, 끝점, 둘 이상의 에지가 모인 분기점과 굴곡률이 국부 최대인 지점을 찾아 특징점을 추출한다.
본 논문은 동일한 대상물을 촬영한 영상을 합성하여 파노라마 영상을 생성하는 방법에 대하여 설명한다. 디지털 카메라의 보급으로 파노라마 영상에 대한 관심이 높아지면서 다양한 방법의 파노라마 영상의 제작 방법이 연구되고 있다. 본 논문에서는 크기 및 회전 불변 특징점을 활용하여 파노라마 영상을 합성하는 방법에 대해서 제안한다. 먼저, 입력 영상들에 대해서 특징점을 추출하고, RANSAC 알고리즘을 통해 추출된 특징점을 정합한다. 정합점을 이용하여 투영 변환식을 모델링하고, 모델링된 변환식을 통하여 영상을 정렬하여 파노라마 영상을 생성한다. 제안한 알고리즘은 SURF 특징점 추출 알고리즘을 적용하여 영상의 크기 및 회전 등의 기하학적 변형에 강인하며, 처리 속도도 향상하였다. 실험에서는 기존 Harris corner 검출기나 SIFT 알고리즘을 통해 검출한 특징과 제안한 알고리즘에서 사용된 SURF 알고리즘을 비교 분석 하였고, $640{\times}480$ 크기의 영상을 이용하여 제안한 알고리즘을 통해 파노라마 영상을 합성하였다. 그 결과 파노라마 영상의 합성에 소요되는 시간은 평균0.4초로 나타났고, 기존 알고리즘에 비하여 효율적인 것으로 나타났다.
뇌 MR 영상에서 질환을 자동적으로 진단하고 판별하는 작업은 정상인의 뇌 영상과의 비교를 통해서 가능하다. 정상인과의 뇌 영상 비교를 통하여 보다 정확하게 질병에 대한 근거를 제시할 수가 있기 때문에 이러한 접근 방법들이 여러 의료영상 연구 분야에서 시도되고 있다. 정상인의 뇌 영상과의 비교를 위해서는 우선적으로 해결되어야 하는 것이 현재의 대상 영상이 정상인 뇌의 어느 위치의 영상과 일치하는 지를 판별하는 문제이다. 따라서 본 연구는 이러한 뇌 매핑에 사용될 수 있는 특징들을 추출하기 위한 것으로, 뇌 매핑에 사용되는 특징들을 추출하기 위해서 뇌 MR 영상으로부터 대리영역, 뇌영역, 뇌척수액영역 그리고 눈영역을 분할한 후 이들의 윤곽선, 최소사각형과 각 영역들의 픽셀 정보들을 찾아낸다. 이는 추후 연구할 뇌 매핑을 위한 대분류에 사용될 수 있다.
의료 영상 처리 시스템에서는 영상들의 검색이 중요한 문제로 대두되고 있다. 그에 대한 해결 방법으로는 의료 영상 처리 시스템에 지능적인 내용 기반의 영상 검색 방법을 도입하는 것이다. 본 연구에서는 의료 영상에 적합한 분할 방법을 사용하여 뇌의 MR 영상에 대하여 내용기반 검색을 하기 위한 영상 특징 색인화 방법을 제안한다. 제안하는 색인화 방법은 뇌 MR 영상에서 뇌영역을 분할하고 특징들을 추출한 후 이 정보를 가지고 대상 영상의 그룹핑 정보를 유추하고, 각 대상 영상에서의 비정상 후보 영역 위치를 찾아내어 3차원 공간 색인을 하는 방법이다.
제안 논문에서는 의료영상 이미지를 입력받아 병변 추출이 가능한 알고리즘을 제안한다. 의료영상 이미지의 병변을 추출하기 위해 SIFT 알고리즘을 이용해 특징점들을 추출한다. 특징점의 강도를 높이기 위해 벡터 유사도를 이용해 입력 영상과 병변이미지를 정합하고 병변을 추출한다. 벡터 유사도 정합을 통해 빠르게 병변을 도출할 수 있다. 국소적인 특징점 쌍으로부터 방향 벡터를 생성하기 때문에 방향 자체는 국소적인 특징만을 나타내지만 두 영상 간에 존재하는 다른 벡터들 간의 유사도를 비교하고 전역적인 특징으로 확장될 수 있는 장점을 갖는다. 또한 병변 정합 오류율은 평균 1.02%, 처리속도는 특징점 강도 정보를 사용하지 않을 때보다 약 40%가 향상됨을 실험을 통해 보였다.
디지털 영상에서의 특징점 추출 기술은 로봇비전, 의료영상 진단시스템 및 비디오 전송과 같은 분야 등에서 많이 응용되고 있다. 디지털 영상에서 특징점을 추출하는 방법에는 비선형 그래디언트, 비선형 라프라시안, 엔트로피와 같은 필터들이 있다. 그런데 인간의 시각에서 영상의 특징이 형성되는 과정을 살펴보면, 밝은 영역보다는 어두운 영역에서의 특징에 더 민감한 특성을 가지고 있으므로 기존의 필터로써 특징점을 추출하는데 효과적이지 못하다. 본 논문에서는 국부영역의 밝기를 고려하는 특징점 추출 필터들을 제안한다. 이들 필터들은 연산이 간단하여 매우 신속하게 특징점을 추출할 수 있으며, 국부적인 밝기를 고려하지만 기존의 엔트로피 연산자가 지닌 단점을 극복하여 어두운 영역에서의 미세한 밝기 변화에는 강건한 특성을 가지는 특성을 지닌다. 실험결과 다양한 밝기변화와 국부영역에 걸쳐 매우 뛰어난 특징점 추출결과를 나타내었다.
본 연구에서는 염색체의 영상패턴을 인식하고 분류하는 방법을 개선하기 위해 패턴인식의 특징정보로 사용되는 비선형적인 염색체 영상을 선형적으로 재구성하는 영상 재구성 알고리즘을 사용하여 선형화된 특징정보를 추출하여 패턴분류기인 신경회로망의 입력정보로 사용한다. 중앙축 변환방법과, 영상 재구성방법을 사용하여 임상적으로 정상인으로 판명된 20명의 염색체 영상의 특징정보를 추출하였다. 중앙축 변환방법에 의하여 추출된 특징정보의 패턴조합과 영상 재구성방법에 의하여 추출된 특징정보의 패턴조합을 구성하였으며, 10명에 대하여 추출한 특징정보를 계층적인 신경회로망(Hierarchical Multilayer Neural Network : HMNN)의 학습입력으로 사용하여 염색체를 분류하기 위한 패턴인식기를 구현하였다. 그리고 나머지 10명에 대하여 학습입력과 동일하게 조합된 패턴조합을 HMNN의 분류입력으로 사용하여 수행한 결과 약 98.26%의 우수한 인식률을 나타내는 최적화된 패턴인식기를 구현할 수 있었다.
최근 들어 영상처리는 여러 분야에서 사용되어지고 있다. 영상처리에서 많이 연구되어지고 있는 기술은 실시간으로 객체를 추적하는 기술이다. 객체를 추적하는 방법은 보행자를 추적하는 HOG(Histogram of Oriented Gradients), 전경과 배경 분리 방법을 사용하는 Codebook 같은 방법 들이 많이 알려져 있다. 그러나 객체가 움직이거나 동적인 배경, 조명변화가 심할 경우 객체 추출이 어려워진다. 본 논문에서는 ROI(Region of Interest)기반 깊이영상과 컬러영상의 특징을 이용해 객체를 추출하는 방법을 제안한다. 첫 번째, 깊이 영상에서 배경분리를 통해 객체의 위치를 찾아 ROI로 설정해준다. 두 번째, 컬러영상을 이용하여 영상의 특징점을 찾는다. 세 번째, 특징점과 객체의 볼록헐(convex hull) 구성점들을 이용하여 새로운 윤곽을 만들어 더 정확한 객체를 추출하도록 한다. 마지막으로 본 논문에서 제안한 방법과 기존 방법과의 비교를 통해 제안한 방법의 결과가 좀 더 정확한 객체를 추출하고 있음을 검증하였다.
최근 라이프 로그의 수집과 관리에 관련된 연구가 많이 진행 중에 있다. 또 핸드폰 카메라, 디지털 카메라, 캠코더 등의 발전으로 자신의 일상생활을 비디오로 저장하고, 인터넷을 통해 공유하는 사람도 증가하고 있다. 비디오 데이터는 많은 정보를 포함하고 있는 라이프 로그의 한 예로. 동영상의 촬영 및 수집이 활발해짐에 따라 동영상의 메타정보를 생성하고, 이를 이용해 동영상 검색과 관리에 이용하려는 연구들이 진행 중이다. 본 논문에서는 라이프 로그를 수집하고 수집된 동영상과 라이프 로그를 이용하여 의미정보를 추출하는 시스템을 제안한다. 의미정보란 사용자의 행동을 나타내는 정보로써 컴퓨터 사용, 식사, 집안일, 이동, 외출, 독서, 휴식, 일, 기타로 9가지의 의미정보를 추출한다. 제안하는 방법은 사용자로부터 GPS, 가속도센서, 캠코더를 이용해 실제 데이터를 수집하고, 전처리 과정을 통하여 특징을 추출한다. 이때 추출될 특징은 위치정보와 사용자의 상태정보 그리고 영상처리릍 통한 RGB와 HSL 색공간의 요소와 MPEG-7의 EHD(Edge Histogram Descriptor). CLD(Color Layout Descriptor)이다. 추출된 특징으로부터 사람 행동과 같은 불안정한 상황에서 강점을 보이는 확률모델 네트워크인 베이지안 네트워크를 이용하여 의미정보를 추출한다. 제안하는 방법의 유용성을 보이기 위해 실제 데이터를 수집하고 추론하고 10-Fold Cross-validation을 이용하여 데이터를 검증한다.
멀티미디어 데이터의 증가로 사용자가 원하는 데이터의 신속하고 정확한 검색이 필요하게 되었다. 본 논문에서는 모양 정보를 기반으로 영상 데이터를 효과적이며 효율적으로 검색하기 위하여, 새로운 모양 정보 특징 및 검색 방법을 제안한다. 본 논문에서는 화소의 공간적분포로 나타나는 모양 정보를 covariance matrix의 eigenvector를 이용하여, 계층적으로 영역을 분할하고, 각 분할된 영역에서 크기 변화, 위치 이동, 회전에 불변하는 특징들을 추출한다. 영상 정보의 검색은 특징벡터 공간에서 질의 영상에서 추출된 특징과, 데이터베이스에 기록된 영상들의 특징 사이의 거리를 계산하여, 거리에 반비례하는 유사도가 높은 영상들을 출력한다. 제안된 모양 특징은 또한 계층수의 조정에 의해서 모양 정보를 표현할 수 있는 정도를 조절 할 수 있다는 장점이 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.