• Title/Summary/Keyword: 영상 특성벡터

Search Result 329, Processing Time 0.029 seconds

Unsupervised Image Classification through Multisensor Fusion using Fuzzy Class Vector (퍼지 클래스 벡터를 이용하는 다중센서 융합에 의한 무감독 영상분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.329-339
    • /
    • 2003
  • In this study, an approach of image fusion in decision level has been proposed for unsupervised image classification using the images acquired from multiple sensors with different characteristics. The proposed method applies separately for each sensor the unsupervised image classification scheme based on spatial region growing segmentation, which makes use of hierarchical clustering, and computes iteratively the maximum likelihood estimates of fuzzy class vectors for the segmented regions by EM(expected maximization) algorithm. The fuzzy class vector is considered as an indicator vector whose elements represent the probabilities that the region belongs to the classes existed. Then, it combines the classification results of each sensor using the fuzzy class vectors. This approach does not require such a high precision in spatial coregistration between the images of different sensors as the image fusion scheme of pixel level does. In this study, the proposed method has been applied to multispectral SPOT and AIRSAR data observed over north-eastern area of Jeollabuk-do, and the experimental results show that it provides more correct information for the classification than the scheme using an augmented vector technique, which is the most conventional approach of image fusion in pixel level.

An Moving Object Segmentation for Moving Camera (이동카메라 환경에서 이동물체분할에 관한 연구)

  • Cho, Youngseok;Kang, Jingu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.47-48
    • /
    • 2013
  • 본 논문에서는 이동 카메라 환경에서 이동물체 추적을 위한 영상 분할에 대하여 연구하였다. 입력영상으로 부터 이동물체영역을 분할하기위하여 입력영상에 대하여 윤곽선을 구한 다음 윤곽선 영역에 대하여 BMA을 이용하여 이동벡터를 구한다. 구해진 이동벡터를 같은 특성의 벡터들을 분류하여 이동물체를 분할한다. 제안된 알고리즘이 다중 이동물체의 분할이 가능하였다.

  • PDF

Vector Quantization Compression of the Still Image by Multilayer Perceptron (다층 신경회로망 학습에 의한 정지 영상의 벡터)

  • Lee, Sang-Chan;Choe, Tae-Wan;Kim, Ji-Hong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.2
    • /
    • pp.390-398
    • /
    • 1996
  • In this paper, a new image compression algorithm using the generality of the multilaryer perceptron is proposed. Proposed algorithm classifies image into some classes, and trains them through the multilayer perceptron. Multilayer perceptron which trained by the above method can do compression and reconstruction of the nontrained image by the generality. Also, it reduces memory size of the side of receiver and quantization error. For the experiment, we divide Lena image into 16 classes and train them through one multilayer perceptron. The experimental results show that we can get excellent reconstruction images by doing compression and reconstruction for Lena image, Dollar image and Statue image.

  • PDF

Car License Plate Extraction and Recognition Using Vertical/Horizontal Intensity Variation and Circular Pattern Vector (수직 및 수평 명암도 변화값과 원형 패턴벡터를 이용한 차량번호판 추출 및 인식 알고리즘)

    • The KIPS Transactions:PartB
    • /
    • v.8B no.2
    • /
    • pp.195-200
    • /
    • 2001
  • 본 논문에서는 실제 입력 차량 영상으로부터 명암도 변화 정보와 원형 패턴 벡터를 이용하여 차량 번호판을 인식하는 알고리즘을 제안하였다. 일반적으로 차량 영상에서는 번호판 영역에서 문자와 배경이 뚜렷하게 구별되고, 일정한 명암도 변화를 가지면서 번호판 이외의 다른 영역 보다 빌집도가 높은 특성이 있다. 따라서 본 논문에서는 이러한 성질을 이용하여 먼저 명암도 변화값을 사용하여 번호판을 추출하도록 하였으며 영상 입력 과정에서 외부 환경에 따라 차량 영상이 어둡거나 밝게 입력될 경우에도 동일한 추출 성능을 얻기 위하여 밝기 보정 과정을 수행하였다. 또한 추출된 번호판 영역으로부터 입력 문자의 크기, 이동 및 회전에 무관한 특성 추출을 위해 원형 패턴 벡터를 이용하여 차량 번호를 인식하도록 하였다. 제안한 알고리즘을 적용한 결과 번호판 추출이 가능하였으며 기존의 방법에 비해 계산 속도가 향상되어 실시간 처리의 가능성을 제시하였다.

  • PDF

Image Retrieval using Statistical Property of Projection Vector (투영벡터의 통계적성질을 이용한 영상 검색)

  • 권동현;김용훈;배성포;이태홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.1044-1049
    • /
    • 2000
  • Projection that can be used as a feature for image representation, includes much available informations such as approximated shape and location. But when we retrieve image using it, there are some disadvantage such as requiring much index data and making different length of projected vector for differenr image size. In order to overcome these problems, we propose a method of using block variance for the projected vector. We use block variance of the projection vector to localize the characteristics of image and to reduce the number of index data in database. Proposed algorithm can make use of statistical advantage through database including various size of images and be executed with fast response time in implementation.

  • PDF

The content-based ultrasound image retrieval by wavelet transform and spatial histogram (웨이브릿 변환과 공간 히스토그램을 이용한 초음파 영상 내용기반 검색)

  • 김범수;곽동민;원종운;김남철;박길흠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.12B
    • /
    • pp.2085-2093
    • /
    • 2000
  • 본 논문에서는 초음파 영상의 대한 내용기반 검색을 위한 초음파 영상의 특징 추출방법과 추출된 특징들을 이용한 검색 방법에 대해 제안한다. 내용기반 초음파 영상 검색을 위한 특징들로 공간영역에서 히스토그램과 웨이브릿 변환후 각 부대역에서 통계적 특성을 추출한다. 웨이브릿 변환 영역에서 추출된 특성은 질의 영상과 유사한 영상의 특성 벡터 거리가 평균 특성 벡터 거리보다 작다는 특성을 가진다. 이러한 특성을 이용하여 일차 검색을 수행하여 그 결과를 공간영역의 히스토그램을 이용한 이차 검색을 위한 후보로 사용함으로써 이차 검색의 대상이 줄어들게 된다. 히스토그램을 이용한 검색은 대상이 많을수록 오류를 범할 가능성이 높아짐으로 검색대상을 줄인다는 것은 매우 중요한 일이다. 또한 히스토그램을 사용함으로써 영상내 의학적 객체의 이동이나 회전에 무관하게 검색을 수행할 수 있다.

  • PDF

Robust feature vector composition for frontal face detection (노이즈에 강인한 정면 얼굴 검출을 위한 특성벡터 추출법)

  • Lee Seung-Ik;Won Chulho;Im Sung-Woon;Kim Duk-Gyoo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.6
    • /
    • pp.75-82
    • /
    • 2005
  • The robust feature vector selection method for the multiple frontal face detection is proposed in this paper. The proposed feature vector for the training and classification are integrated by means, amplitude projections, and its 1D Harr wavelet of the input image. And the statistical modeling is performed both for face and nonface classes. Finally, the estimated probability density functions (PDFs) are applied for the detection of multiple frontal faces in the still image. The proposed method can handle multiple faces, partially occluded faces, and slightly posed-angle faces. And also the proposed method is very effective for low quality face images. Experimental results show that detection rate of the propose method is $98.3\%$ with three false detections on the testing data, SET3 which have 227 faces in 80 images.

A Feature Re-weighting Approach for the Non-Metric Feature Space (가변적인 길이의 특성 정보를 지원하는 특성 가중치 조정 기법)

  • Lee Robert-Samuel;Kim Sang-Hee;Park Ho-Hyun;Lee Seok-Lyong;Chung Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.33 no.4
    • /
    • pp.372-383
    • /
    • 2006
  • Among the approaches to image database management, content-based image retrieval (CBIR) is viewed as having the best support for effective searching and browsing of large digital image libraries. Typical CBIR systems allow a user to provide a query image, from which low-level features are extracted and used to find 'similar' images in a database. However, there exists the semantic gap between human visual perception and low-level representations. An effective methodology for overcoming this semantic gap involves relevance feedback to perform feature re-weighting. Current approaches to feature re-weighting require the number of components for a feature representation to be the same for every image in consideration. Following this assumption, they map each component to an axis in the n-dimensional space, which we call the metric space; likewise the feature representation is stored in a fixed-length vector. However, with the emergence of features that do not have a fixed number of components in their representation, existing feature re-weighting approaches are invalidated. In this paper we propose a feature re-weighting technique that supports features regardless of whether or not they can be mapped into a metric space. Our approach analyses the feature distances calculated between the query image and the images in the database. Two-sided confidence intervals are used with the distances to obtain the information for feature re-weighting. There is no restriction on how the distances are calculated for each feature. This provides freedom for how feature representations are structured, i.e. there is no requirement for features to be represented in fixed-length vectors or metric space. Our experimental results show the effectiveness of our approach and in a comparison with other work, we can see how it outperforms previous work.

A License Plate Recognition Using Intensity Variation and Hybrid Pattern Vector (명암도 변화값과 하이브리드 패턴 벡터를 이용한 번호판 인식)

  • 석영수;김정훈;이응주
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.153-156
    • /
    • 2001
  • 본 논문에서는 하이브리드 패턴 벡터를 이용하여 차량 번호를 실시간으로 인식하는 알고리즘을 제안하였다. 차량 입력 영상에서 전처리 과정을 거쳐 번호판의 수평 및 수직 명암값 빈도수 변화를 이용해 번호판 영역을 추출하고 하이브리드 패턴을 적용해 더 정확한 번호판 문자 및 숫자를 인식하는 알고리즘을 제안하였다. 제안한 알고리즘의 번호판 추출 과정에서는 번호판 영역의 문자와 배경이 뚜렷하게 구별되는 특성 및 번호 판 영역의 상대적인 크기의 특성과 수평 및 수직 빈도 수를 추하여 입력된 차량영상에서 번호판 영역을 추출한다. 또한 번호판 영역에서 잡음 제거와 세선화(Thinning)를 적용해 문자 및 숫자를 하이브리드 패턴 벡터를 적용하여 문자의 크기, 문자와 문자 사이의 밀집도의 특성, 이동에 무관한 특성을 이용해 차량 번호를 인식하는 알고리즘을 제안하였다. 제안한 방법들을 적용한 결과 기존의 원형 패턴 벡터 보다 훨씬 계산 속도가 빠르며, 차량 번호판의 크기에 관계없이 잡음에 영향을 받지 않고 차량 번호를 실시간으로 처리할 수 있는 가능성을 제시하였고, 번호판 영역이 불규칙한 조명 상태에서도 더 정확한 차량 번호를 인식 할 수 있는 알고리즘을 본 논문에서 제안하였다.

  • PDF

Modelling of Efficient Color Image Descriptor for Multi-resolution Database (다중-해상도 데이터베이스를 위한 효율적인 칼라 영상 기술자의 모델링)

  • Lee, Yong-Hwan;Ahn, Hyochang;Cho, Hanjin;Lee, June-Hwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.35-38
    • /
    • 2013
  • 최근, 대용량 영상 데이터베이스가 축적되면서 영상 인식과 영상 검색 분야가 주목받고 있으며, 다양한 디바이스에 따라 생성되는 영상의 해상도가 상이하게 나타나고 있다. 본 논문에서는 내용-기반 영상 검색을 위한 새로운 칼라 기술자를 제안한다. 제안 알고리즘에서는 공간 칼라 정보에 대한 웨이블릿 변환과 채널 및 변환 서브밴드에 따른 가중치를 적용하여 칼라 특징 벡터를 추출한다. 시뮬레이션을 통하여 제안하는 알고리즘의 검색 성능을 평가하였으며, 유사한 특징 벡터 크기를 기준으로, 기존의 MPEG-7 등의 칼라 검색 기술자보다 다중-해상도의 영상 데이터베이스에서 향상된 검색율을 보임을 확인하였다. 본 논문에서 제시한 알고리즘은 단일 특성의 특징 벡터를 추출하는 검색 기술자로써, 다중 특징으로 결합하기 위한 기본 기술자로 활용될 수 있다.

  • PDF