최근에는 SPECT/CT의 보급으로 융합영상을 여러 질환에 적용하고 있지만, 폐질환에 대한 적용은 널리 이용되고 있지 않다. 특히, CT 결과에서 폐색전증을 의심하여 SPECT를 시행하는 경우가 발생하며, 보다 정확한 진단을 위해 SPECT/CT가 중요하다. 하지만, SPECT/CT를 보유하지 않은 병원에서는 적용에 한계가 발생하며, SPECT/CT를 보유한 병원에서 검사를 시행한다 하더라도 이미 CT검사 이후 SPECT/CT를 진행하는 경우가 많다. CT검사에서 발생하는 피폭선량 외에도 추가적인 SPECT/CT는 이중으로 피폭선량을 발생하는 경우 해당되며, 불필요한 피폭이 발생하는 경우에 속한다. 그러므로 본 연구에서는 불필요한 피폭을 방지하고, SPECT/CT를 보유하지 않은 의료기관에서 SPECT와 CT의 각각 획득된 영상을 융합하고, 폐질환에서의 영상의 유용성을 평가하였다. 팬텀실험은 NEMA $Phantom^{TM}$ (NU2-2001)으로 SPECT와 CT에서 획득된 영상을 융합하였으며, 임상적용은 10명의 환자(남자 7명, 여자3명, 평균나이: 65.3세${\pm}$12.7세)를 대상으로 각각의 영상을 융합하여 분석하였다. 팬텀실험과 임상적용에서 모두 SPECT, CT의 각각의 영상보다 fusion image에서 높은 점수를 나타내었으며, SPECT와 CT영상을 fusion하여 각각의 장점을 극대화 할 수 있었다. CT영상으로부터 획득한 폐혈관 image가 SPECT로부터 얻은 기능적인 영상을 fusion함으로써 pulmonary embolism이 폐실질에 나타내는 영향을 더욱 잘 묘사할 수 있었다. SPECT/CT가 가장 이상적이라 할 수 있지만, 아직 보급되어 있지 않은 경우 이와 같은 프로토콜을 이용하여 진단에 사용한다면 보다 정확한 진단에 도움이 되리라 사료된다.
근감소증은 영양부족, 운동량 감소 그리고 노화 등으로 정상적인 근육의 양과 근력 및 근 기능이 감소하는 질환을 말한다. 근감소증은 보편적으로 유럽 근감소증 실무그룹분석(EWGSOP)에서 정의한 측정 방법을 따른다. 본 논문에서는 근감소증 진단을 위한 영상 분할 모델을 개발하고 외부검증하는 방법에 대해서 제안한다. 우리는 CT 영상에서 L3 영역을 선별하여 자동으로 근육, 피하지방, 내장지방을 분할할 수 있는 인공지능 모델을 U-Net을 사용하여 개발하였다. 또한 모델의 성능을 평가하기 위해서 분할영역의 IOU(Intersection over Union)를 계산하여 내부검증을 진행하였으며, 타 병원의 데이터를 이용하여 같은 방법으로 외부검증을 진행한 결과를 보인다. 검증 결과를 토대로 문제점과 해결방안에 대해서 고찰하고 보완하고자 했다.
최근 인공지능 연구가 활발히 진행되고 있는 가운데 국내외에서 오픈 데이터셋을 제공하고 있어 기술개발이 가속화되고 있다. 데이터셋은 지도학습을 위한 학습데이터로 라벨링 데이터를 포함하고 있어 다양한 라벨링 기능이 적용된 도구 개발이 필요하다. 본 논문에서는 의료영상의 라벨링 데이터를 정교하고 빠르게 생성하기 위한 라벨링 웹 애플리케이션에 대해서 기술한다. 이를 구현하기 위해서 Back Projection, Grabcut 기법을 이용한 반자동 방식과 기계학습 모델을 통해서 예측한 자동 방식의 라벨링 기능을 구현하였다. 이와 관련하여 라벨링 기능별 수행 결과를 근감소증 진단을 위한 영상 라벨링 수행결과와 정량분석 결과를 보였다.
본 논문에서는 웨이브릿 영역에서 엔트로피 특징과 웨이브릿 모멘트의 융합에 의한 효율적인 영상기법을 제안한다. 엔트로피 특징은 밝기값의 국부적 변화도에 민감하고 벨리, 에지 등의 특징을 잘 검출한다. 이러한 특징을 밴드별 위치정보와 주파수정보를 모두 가지는 웨이브릿 모멘트와 융합하여 내용기반 영상검색에 효과적으로 적응하였다. 실험에 사용한 DB는 Corel Draw영상을 사용하였으며 실험 결과, 기존의 검색 방법들에 비해 매우 우수한 검색 성능을 보임을 확인하였다.
한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
/
pp.181-184
/
2001
본 논문에서는 얼굴영상의 특징추출에 적합한 LITFE (Linear Interpolated Triangle Feature Extraction)를 이용하여 얼굴영상을 인식하는 알고리즘을 제안한다. LITFE는 얼굴의 위치정보를 보존하면서 영상 분할이 가능한 특징추출 알고리즘으로, PCA (Principal Component Analysis) 의 신경회로망적 접근방법인 GHA(Genralized Hebbian Algorithm)와 병행하면 얼굴의 특징을 효과적으로 추출하여 인식할 수 있는 장점이 있다.
본 논문에서는 웨이블릿 변환과 확산코드를 이용하여 동영상 내부에 이진이미지패턴형 워터마크를 삽입할 수 있는 새로운 워터마킹 방법을 소개한다. 먼저, 동영상을 디코딩하여 RGB 데이터로 이루어진 인트라 프레임(I-frame)들을 구한다. 그리고 이것을 YC$_{b}$C$_{r}$ 좌표공간으로 변환한 후, 휘도 평면만을 3단계 DWT하여 확산코드와 다중가중치를 조합한 워터마크를 삽입한다. 실험에서는 제안한 방법으로 워터마킹된 영상의 화질을 기존의 방법들과 비교하고, 손실압축과 밝기(brightness)변화 그리고 대비(contrast)실험 등을 통해 제안한 방법의 견고성을 입증해 보인다.
본 논문에서는 텍스쳐가 지니고 있는 일반적인 속성 거침, 부드러움의 특성을 분석해서 영상에 내재된 텍스쳐를 자동으로 분석하고 분류하는 텍스쳐 인식 시스템을 제안한다. 본 연구는 텍스쳐 영상이 지닌 그레이 레벨의 공간적인 의존성을 이용한 통계적 분석에 기반 한 것으로 모멘트와 동차성의 차를 이용해서 텍스쳐의 일반적인 속성을 검출하기 때문에 텍스쳐의 구조형태에 크게 영향을 받지 않는 이점을 가진다. 제안한 시스템의 성능 평가를 위해서 다양한 텍스쳐 영상에 제안한 방법을 적용하고, 성공적인 결과를 보인다.
FIHS(Fast Intensity Hue Saturation) 융합은 빠른 계산 능력 때문에 널리 이용되고 있으나 IHS(Intensity Hue Saturation) 융합과 마찬가지로 분광정보 왜곡 현상이 나타난다. 본 논문에서는 각 분광 대역의 비율을 이용하여 분광정보 왜곡을 줄일 수 있는 융합법(FIHS-BR)과 공간정보 및 분광 대역의 비율을 활용한 적응 FIHS 융합법(FIHS-SABR)을 제안하였다. 제안한 FIHS-BR 융합은 각 분광 대역의 비율을 이용하여 구한 분광 대역별로 서로 다른 공간 해상도 개선 값을 더하여 분광정보 왜곡을 줄일 수 있도록 하였으며, FIHS-SABR 융합은 국부 영상의 공간정보 특성에 따라 적응적으로 결정된 공간 해상도 개선 값을 각 분광 대역의 비율에 따라 분광 대역별로 재조정하여 분광 정보 왜곡을 더 많이 줄일 수 있도록 하였다. 제안한 FIHS-BR 융합과 FIHS-SABR 융합의 성능을 확인하기 위하여 IKONOS 위성 영상에 대하여 컴퓨터 시뮬레이션을 수행하였으며, 실험 결과 제안 방법들이 기존 융합 영상에서 색상 왜곡이 심하게 나타나는 삼림지역 등에서 색상 왜곡 현상이 적게 나타남을 확인할 수 있었으며, 융합 영상의 분광정보 특성 평가 결과도 가장 우수함을 확인할 수 있었다.
인간과 컴퓨터간의 상호교류 하는데 있어서 감정 인식은 필수라 하겠다. 그래서 본 논문에서는 음성 신호 및 얼굴 영상을 BL(Bayesian Learning)과 PCA(Principal Component Analysis)에 적용하여 5가지 감정 (Normal, Happy, Sad, Anger, Surprise) 으로 패턴 분류하였다. 그리고 각각 신호의 단점을 보완하고 인식률을 높이기 위해 결정 융합 방법과 특징 융합 방법을 이용하여 감정융합을 실행하였다. 결정 융합 방법은 각각 인식 시스템을 통해 얻어진 인식 결과 값을 퍼지 소속 함수에 적용하여 감정 융합하였으며, 특정 융합 방법은 SFS(Sequential Forward Selection)특정 선택 방법을 통해 우수한 특정들을 선택한 후 MLP(Multi Layer Perceptron) 기반 신경망(Neural Networks)에 적용하여 감정 융합을 실행하였다.
본 논문에서는 신장조직 영상에서 사구체 영역을 자동적으로 추출하는 방법을 제안한다. 사구체 조직은 신장의 상태를 나타내는 많은 정보를 포함하고 있기 때문에 사구체 영역의 추출은 신장 검사를 자동화하기 위한 첫 번째 단계이다. 그러나 사구체 영역을 단순한 2치화 방법으로 직접 추출함은 어려운 일이다. 이에 본 연구자들은 우선, 가우스 함수에 의한 원영상의 빛바랜 영상을 동적인 임계값으로 사용함으로써 원영상을 2치화한다. 다음으로, 획득한 영상으로부터 간단한 영상처리 기법에 의한 사구체 영역의 경계 에지를 포함하는 모든 에지를 추출한다. 그 다음으로 사구체 영역의 경계 에지를 판별함으로써 사구체 영역을 추출하였다. 이 방법은 다수의 샘플에 적용해서 유효성을 확인한 바 양호한 결과를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.