• Title/Summary/Keyword: 영상 안개 제거

Search Result 78, Processing Time 0.02 seconds

Single Image Dehazing Using Linear Transformation of Saturation (채도의 선형 변환을 이용한 단일 영상 안개 제거)

  • Park, Taehee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.197-205
    • /
    • 2019
  • In this paper, an efficient single dehazing algorithm is proposed based on linear transformation by assuming that a linear relationship exists in saturation component between the haze image and haze-free image. First, we analyze the linearity of saturation channel, estimate the medium transmission map in terms of the saturation component. Then, the intensity of haze-free image is assumed by using CLAHE to enhance contrast of haze image. Experimental results demonstrate that proposed algorithm can naturally recover the image, especially can remove color distortion caused by conventional methods. Therefore, our approach is competitive with other state-of-the art single dehazing methods.

Image-based fire area segmentation method by removing the smoke area from the fire scene videos (화재 현장 영상에서 연기 영역을 제외한 이미지 기반 불의 영역 검출 기법)

  • KIM, SEUNGNAM;CHOI, MYUNGJIN;KIM, SUN-JEONG;KIM, CHANG-HUN
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • In this paper, we propose an algorithm that can accurately segment a fire even when it is surrounded by smoke of a similar color. Existing fire area segmentation algorithms have a problem in that they cannot separate fire and smoke from fire images. In this paper, the fire was successfully separated from the smoke by applying the color compensation method and the fog removal method as a preprocessing process before applying the fire area segmentation algorithm. In fact, it was confirmed that it segments fire more effectively than the existing methods in the image of the fire scene covered with smoke. In addition, we propose a method that can use the proposed fire segmentation algorithm for efficient fire detection in factories and homes.

Adaptive Video Enhancement Algorithm for Military Surveillance Camera Systems (국방용 감시카메라를 위한 적응적 영상화질 개선 알고리즘)

  • Shin, Seung-Ho;Park, Youn-Sun;Kim, Yong-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.28-35
    • /
    • 2014
  • Surveillance cameras in national border and coastline area often occur the video distortion because of rapidly changing weather and light environments. It is positively necessary to enhance the distorted video quality for keeping surveillance. In this paper, we propose an adaptive video enhancement algorithm in the various environment changes. To solve an unstable performance problem of the existing method, the proposed method is based on Retinex algorithm and uses enhanced curves which is adapted in foggy and low-light conditions. In addition, we mixture the weighted HSV color model to keep color constancy and reduce noise to obtain clear images. As a results, the proposed algorithm improves the performance of well-balanced contrast enhancement and effective color restoration without any quality loss compared with the existing algorithm. We expect that this method will be used in surveillance camera systems and offer help of national defence with reliability.

Development of Video-Detection Integration Algorithm on Vehicle Tracking (트래킹 기반 영상검지 통합 알고리즘 개발)

  • Oh, Jutaek;Min, Junyoung;Hu, Byungdo;Hwang, Bohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5D
    • /
    • pp.635-644
    • /
    • 2009
  • Image processing technique in the outdoor environment is very sensitive, and it tends to lose a lot of accuracy when it rapidly changes by outdoor environment. Therefore, in order to calculate accurate traffic information using the traffic monitoring system, we must resolve removing shadow in transition time, Distortion by the vehicle headlights at night, noise of rain, snow, and fog, and occlusion. In the research, we developed a system to calibrate the amount of traffic, speed, and time occupancy by using image processing technique in a variety of outdoor environments change. This system were tested under outdoor environments at the Gonjiam test site, which is managed by Korea Institute of Construction Technology (www.kict.re.kr) for testing performance. We evaluated the performance of traffic information, volume counts, speed, and occupancy time, with 4 lanes (2 lanes are upstream and the rests are downstream) from the 16th to 18th December, 2008. The evaluation method performed as based on the standard data is a radar detection compared to calculated data using image processing technique. The System evaluation results showed that the amount of traffic, speed, and time occupancy in period (day, night, sunrise, sunset) are approximately 92-97% accuracy when these data compared to the standard data.

A LabVIEW-based Video Dehazing using Dark Channel Prior (Dark Channel Prior을 이용한 LabVIEW 기반의 동영상 안개제거)

  • Roh, Chang Su;Kim, Yeon Gyo;Chong, Ui Pil
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.101-107
    • /
    • 2017
  • LabVIEW coding for video dehazing was developed. The dark channel prior proposed by K. He was applied to remove fog based on a single image, and K. B. Gibson's median dark channel prior was applied, and implemented in LabVIEW. In other words, we improved the image processing speed by converting the existing fog removal algorithm, dark channel prior, to the LabVIEW system. As a result, we have developed a real-time fog removal system that can be commercialized. Although the existing algorithm has been utilized, since the performance has been verified real - time, it will be highly applicable in academic and industrial fields. In addition, fog removal is performed not only in the entire image but also in the selected area of the partial region. As an application example, we have developed a system that acquires clear video from the long distance by connecting a laptop equipped with LabVIEW SW that was developed in this paper to a 100~300 times zoom telescope.

Enhancement of Object Detection using Haze Removal Approach in Single Image (단일 영상에서 안개 제거 방법을 이용한 객체 검출 알고리즘 개선)

  • Ahn, Hyochang;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.76-80
    • /
    • 2018
  • In recent years, with the development of automobile technology, smart system technology that assists safe driving has been developed. A camera is installed on the front and rear of the vehicle as well as on the left and right sides to detect and warn of collision risks and hazards. Beyond the technology of simple black-box recording via cameras, we are developing intelligent systems that combine various computer vision technologies. However, most related studies have been developed to optimize performance in laboratory-like environments that do not take environmental factors such as weather into account. In this paper, we propose a method to detect object by restoring visibility in image with degraded image due to weather factors such as fog. First, the image quality degradation such as fog is detected in a single image, and the image quality is improved by restoring using an intermediate value filter. Then, we used an adaptive feature extraction method that removes unnecessary elements such as noise from the improved image and uses it to recognize objects with only the necessary features. In the proposed method, it is shown that more feature points are extracted than the feature points of the region of interest in the improved image.

Object Detection Algorithm Using Edge Information on the Sea Environment (해양 환경에서 에지 정보를 이용한 물표 추출 알고리즘)

  • Jeong, Jong-Myeon;Park, Gyei-Kark
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.69-76
    • /
    • 2011
  • According to the related reports, about 60 percents of ship collisions have resulted from operating mistake caused by human factor. Specially, the report said that negligence of observation caused 66.8 percents of the accidents due to a human factor. Hence automatic detection and tracking of an object from an IR images are crucial for safety navigation because it can relieve officer's burden and remedies imperfections of human visual system. In this paper, we present a method to detect an object such as ship, rock and buoy from a sea IR image. Most edge directions of the sea image are horizontal and most vertical edges come out from the object areas. The presented method uses them as a characteristic for the object detection. Vertical edges are extracted from the input image and isolated edges are eliminated. Then morphological closing operation is performed on the vertical edges. This caused vertical edges that actually compose an object be connected and become an object candidate region. Next, reference object regions are extracted using horizontal edges, which appear on the boundaries between surface of the sea and the objects. Finally, object regions are acquired by sequentially integrating reference region and object candidate regions.

Biportal Endoscopic Spinal Surgery for Lumbar Intervertebral Disc Herniation (두 개의 입구를 통한 내시경 척추 수술: 요추부 추간판 탈출증에의 적용)

  • Lee, Ho-Jin;Choi, Dae-Jung;Park, Eugene J.
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.3
    • /
    • pp.211-218
    • /
    • 2019
  • Herniation of the intervertebral disc is a medical disease manifesting as a bulging out of the nucleus pulposus or annulus fibrosis beyond the normal position. Most lumbar disc herniation cases have a favorable natural course. On the other hand, surgical intervention is reserved for patients with severe neurological symptoms or signs, progressive neurological symptoms, cauda equina syndrome, and those who are non-responsive to conservative treatment. Numerous surgical methods have been introduced, ranging from conventional open, microscope assisted, tubular retractor assisted, and endoscopic surgery. Among them, microscopic discectomy is currently the standard method. Biportal endoscopic spinal surgery (BESS) has several merits over other surgical techniques, including separate and free handling of endoscopy and surgical instruments, wide view of the surgical field with small skin incisions, absence of the procedure of removing fog from the endoscope, and lower infection rate by continuous saline irrigation. In addition, existing arthroscopic instruments for the extremities and conventional spinal instruments can be used for this technique and surgery for recurred disc herniation is applicable because delicate surgical procedures are performed under a brightness of 2,700 to 6,700 lux and a magnification of 28 to 35 times. Therefore, due to such advantages, BESS is a novel technique for the surgical treatment of lumbar disc herniation.