• Title/Summary/Keyword: 영상 분류 및 검색

Search Result 98, Processing Time 0.026 seconds

Efficient Object Classification Scheme for Scanned Educational Book Image (교육용 도서 영상을 위한 효과적인 객체 자동 분류 기술)

  • Choi, Young-Ju;Kim, Ji-Hae;Lee, Young-Woon;Lee, Jong-Hyeok;Hong, Gwang-Soo;Kim, Byung-Gyu
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1323-1331
    • /
    • 2017
  • Despite the fact that the copyright has grown into a large-scale business, there are many constant problems especially in image copyright. In this study, we propose an automatic object extraction and classification system for the scanned educational book image by combining document image processing and intelligent information technology like deep learning. First, the proposed technology removes noise component and then performs a visual attention assessment-based region separation. Then we carry out grouping operation based on extracted block areas and categorize each block as a picture or a character area. Finally, the caption area is extracted by searching around the classified picture area. As a result of the performance evaluation, it can be seen an average accuracy of 83% in the extraction of the image and caption area. For only image region detection, up-to 97% of accuracy is verified.

Clipart Image Retrieval System using Shape Information (모양 정보를 이용한 클립아트 이미지 검색 시스템)

  • Cheong, Seong-Il;Kim, Seung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.116-125
    • /
    • 2002
  • This paper presented a method of extracting shape information from a clipart image and then measured the similarity between clipart images using the extracted shape information. The results indicated that the outlines of the extracted clipart images were clearer that those of the original images. Previous methods of extracting shape information could be classified into outline-based methods and region-based methods. Included in the former category, the proposed method expressed the convex and concave aspects of an outline using the ratio of a rectangle. Accordingly, the proposed method was superior in expressing shape information than previous outline-based feature methods.

Recognition of Word-level Attributed in Machine-printed Document Images (인쇄 문서 영상의 단어 단위 속성 인식)

  • Gwak, Hui-Gyu;Kim, Su-Hyeong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.5
    • /
    • pp.412-421
    • /
    • 2001
  • 본 논문은 문서 영상에 존재하는 개별 단어들에 대한 속성정보 추출 방법을 제안한다. 단어 단위의 속성 인식은 단어 영상 매칭의 정확도 및 속도 개선, OCR 시스템에서 인식률 향상, 문서의 재생산 등 다양한 응용 가치를 찾을 수 있으며, 메타정보(meta-information) 추출을 통해 영상 검색(image retrieval)이나 요약(summary) 생성 등에 활용할 수 있다. 제안하는 시스템에서 고려하는 단어 영상의 속성은 언어의 종류(한글, 영문), 스타일(볼드, 이탤릭, 보통, 밑줄), 문자 크기(10, 12, 14 포인트), 문자 개수 (한글: 2, 3, 4, 5, 영문: 4, 5, 6, 7, 8, 9, 10), 서체(명조, 고딕)의 다섯 가지 정보이다. 속성 인식을 위한 특징은, 언어 종류 인식에 2개, 스타일 인식에 3개, 문자 크기와 개수는 각각 1개, 한글 서체 인식은 1개, 영문 서체 인식은 2개를 사용한다. 분류기는 신경망, 2차형 판별함수(QDF), 선형 판별함수(LDF)를 계층적으로 구성한다. 다섯 가지 속성이 조합된 26,400개의 단어 영상을 사용한 실험을 통해, 제안된 방법이 소수의 특징만으로도 우수한 속성 인식 성능을 보임을 입증하였다.

  • PDF

Evaluation of shape similarity for 3D models (3차원 모델을 위한 형상 유사성 평가)

  • Kim, Jeong-Sik;Choi, Soo-Mi
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.357-368
    • /
    • 2003
  • Evaluation of shape similarity for 3D models is essential in many areas - medicine, mechanical engineering, molecular biology, etc. Moreover, as 3D models are commonly used on the Web, many researches have been made on the classification and retrieval of 3D models. In this paper, we describe methods for 3D shape representation and major concepts of similarity evaluation, and analyze the key features of recent researches for shape comparison after classifying them into four categories including multi-resolution, topology, 2D image, and statistics based methods. In addition, we evaluated the performance of the reviewed methods by the selected criteria such as uniqueness, robustness, invariance, multi-resolution, efficiency, and comparison scope. Multi-resolution based methods have resulted in decreased computation time for comparison and increased preprocessing time. The methods using geometric and topological information were able to compare more various types of models and were robust to partial shape comparison. 2D image based methods incurred overheads in time and space complexity. Statistics based methods allowed for shape comparison without pose-normalization and showed robustness against affine transformations and noise.

Automatic Tagging Scheme for Plural Faces (다중 얼굴 태깅 자동화)

  • Lee, Chung-Yeon;Lee, Jae-Dong;Chin, Seong-Ah
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.11-21
    • /
    • 2010
  • To aim at improving performance and reflecting user's needs of retrieval, the number of researches has been actively conducted in recent year as the quantity of information and generation of the web pages exceedingly increase. One of alternative approaches can be a tagging system. It makes users be able to provide a representation of metadata including writings, pictures, and movies etc. called tag and be convenient in use of retrieval of internet resources. Tags similar to keywords play a critical role in maintaining target pages. However, they still needs time consuming labors to annotate tags, which sometimes are found to be a hinderance caused by overuse of tagging. In this paper, we present an automatic tagging scheme for a solution of current tagging system conveying drawbacks and inconveniences. To realize the approach, face recognition-based tagging system on SNS is proposed by building a face area detection procedure, linear-based classification and boosting algorithm. The proposed novel approach of tagging service can increase possibilities that utilized SNS more efficiently. Experimental results and performance analysis are shown as well.

Word Extraction from Table Regions in Document Images (문서 영상 내 테이블 영역에서의 단어 추출)

  • Jeong, Chang-Bu;Kim, Soo-Hyung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.369-378
    • /
    • 2005
  • Document image is segmented and classified into text, picture, or table by a document layout analysis, and the words in table regions are significant for keyword spotting because they are more meaningful than the words in other regions. This paper proposes a method to extract words from table regions in document images. As word extraction from table regions is practically regarded extracting words from cell regions composing the table, it is necessary to extract the cell correctly. In the cell extraction module, table frame is extracted first by analyzing connected components, and then the intersection points are extracted from the table frame. We modify the false intersections using the correlation between the neighboring intersections, and extract the cells using the information of intersections. Text regions in the individual cells are located by using the connected components information that was obtained during the cell extraction module, and they are segmented into text lines by using projection profiles. Finally we divide the segmented lines into words using gap clustering and special symbol detection. The experiment performed on In table images that are extracted from Korean documents, and shows $99.16\%$ accuracy of word extraction.

Nucleus Segmentation and Recognition of Uterine Cervical Pop-Smears using Region Growing Technique and Backpropagation Algorithm (영역 확장 기법과 오류 역전파 알고리즘을 이용한 자궁경부 세포진 영역 분할 및 인식)

  • Heo Jung-Min;Kim Sung-Shin;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.335-339
    • /
    • 2006
  • 자궁 경부 세포진 영상의 핵 영역 분할은 자궁 경부암 자동화 검색 시스템의 가장 어렵고도 중요한 분야로 알려져 있다. 자궁 경부 세포진 영상은 배경과 세포의 영역이 확실히 구분되지 않는 경우가 많기 때문에 이들을 확실히 구분하는 것이 매우 중요하다. 본 논문에서는 이러한 문제점을 해결하기 위해 자궁 경부 세포진 영상에서 Region growing 기법을 적용하여 세포 영상을 분할한다. Region growing 기법은 화소간의 유사도를 측정하여 영역을 확장하여 분할하는 방법이다. 세포와 배경이 분할된 영상을 일정 임계값을 이용하여 영상을 이진화 한 후, 8방향 윤곽선 추적 알고리즘을 이용해 세포 영역을 추출한다. 추출된 세포 영역을 원 영상인 RGB 컬러로 변환한 후에 K-means 알고리즘을 적용하여 각 세포 영역의 RGB 화소를 R, G, B 채널로 각각 분리하여 클러스터링한다. 클러스터링된 각각의 R, G, B 채널의 클러스터 값을 이용하여 HSI 모델로 변환시킨 후에 세포핵 영역의 Hue 정보를 추출한다. 추출된 세포핵의 특징을 오류 역전파 알고리즘을 적용하여 정상 세포와 비정상 세포를 분류하고 인식한다.

  • PDF

A Study on Contents-based Retrieval using Wavelet (Wavelet을 이용한 내용기반 검색에 관한 연구)

  • 강진석;박재필;나인호;최연성;김장형
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.1051-1066
    • /
    • 2000
  • According to the recent advances of digital encoding technologies and computing power, large amounts of multimedia informations such as image, graphic, audio and video are fully used in multimedia systems through Internet. By this, diverse retrieval mechanisms are required for users to search dedicated informations stored in multimedia systems, and especially it is preferred to use contents-based retrieval method rather than text-type keyword retrieval method. In this paper, we propose a new contents-based indexing and searching algorithm which aims to get both high efficiency and high retrieval performance. To achieve these objectives, firstly the proposed algorithm classifies images by a pre-processing process of edge extraction, range division, and multiple filtering, and secondly it searches the target images using spatial and textural characteristics of colors, which are extracted from the previous process, in a image. In addition, we describe the simulation results of search requests and retrieval outputs for several images of company's trade-mark using the proposed contents-based retrieval algorithm based on wavelet.

  • PDF

A Method of Describing and Retrieving Movement of an Object by Using the Shape Variation of an Object (객체의 모양 변화를 이용한 동작 표현 및 검색 방법)

  • Choi, Minseok
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.15-21
    • /
    • 2022
  • In the content-based video retrieval applications, the information on the movement of an object can be used as important in classifying the content. In particular, analyzing and classifying human movement can be used for various purposes as well as retrieval. In this paper, a method to improve the performance of the shape variation descriptor and shape sequence to describe and classify movement using shape information that changes according to the movement of an object is proposed. By selecting a shape descriptor to more efficiently describe the shape information of an object and comparing the distance function used to measure the similarity, the description and retrieval efficiency of movement information can be increased. Through experiments, it was shown that the proposed method can describe movement information more efficiently and increase the retrieval efficiency compared to the previous method.

Trends in the Use of Artificial Intelligence in Medical Image Analysis (의료영상 분석에서 인공지능 이용 동향)

  • Lee, Gil-Jae;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.453-462
    • /
    • 2022
  • In this paper, the artificial intelligence (AI) technology used in the medical image analysis field was analyzed through a literature review. Literature searches were conducted on PubMed, ResearchGate, Google and Cochrane Review using the key word. Through literature search, 114 abstracts were searched, and 98 abstracts were reviewed, excluding 16 duplicates. In the reviewed literature, AI is applied in classification, localization, disease detection, disease segmentation, and fit degree of registration images. In machine learning (ML), prior feature extraction and inputting the extracted feature values into the neural network have disappeared. Instead, it appears that the neural network is changing to a deep learning (DL) method with multiple hidden layers. The reason is thought to be that feature extraction is processed in the DL process due to the increase in the amount of memory of the computer, the improvement of the calculation speed, and the construction of big data. In order to apply the analysis of medical images using AI to medical care, the role of physicians is important. Physicians must be able to interpret and analyze the predictions of AI algorithms. Additional medical education and professional development for existing physicians is needed to understand AI. Also, it seems that a revised curriculum for learners in medical school is needed.