• Title/Summary/Keyword: 영상 병합

Search Result 245, Processing Time 0.032 seconds

Character Region Detection Using Hangul Character Structure and Class Feature in Natural Images (자연영상에서 한글 자소 구조 및 유형 특징을 이용한 문자 영역 검출)

  • Bak, Jong-Cheon;Gwon, Gyo-Hyeon;Jeon, Byeong-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.396-399
    • /
    • 2011
  • 모바일 기기의 보급이 확대됨으로서 모바일 기기에 내장된 카메라로 획득한 영상을 처리하는 다양한 종류의 응용프로그램이 개발되어 사용되고 있다. 대표적인 응용프로그램은 카메라로 찍은 영상의 사물 검색결과를 인터넷 검색엔진과 연계함으로서 키워드 입력 없이 검색할 수 있도록 하는 것이다. 본 연구는 그 중에서 한글 문자가 포함된 영상을 대상으로 영상검색 수행하는 연구로서 영상에서 한글 문자 영역을 검출하는 방법을 제안하였다. 한글 문자 구조 특징으로 한글 자소를 병합하여 후보 문자 영역을 추출하고 병합된 후보 문자 영역을 한글 6가지 문자 유형 특징을 기반으로 문자 영역을 여부를 판별함으로서 최종적인 문자 영역을 검출한다. 실험결과 문자영역 재현률이 향상됨을 알 수 있었다.

  • PDF

Rate-Distortion Based Image Segmentation Using Recursive Merging and Texture Approximation (질감 근사화 및 반복적 병합을 이용한 율왜곡 기반 영상 분할)

  • 정춘식;임채환;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.156-166
    • /
    • 2000
  • A rate-distortion based segmentation using recursive merging is presented, which considers texture as a homogeneity by adopting the procedure of a generalized texture approximation. The texture in a region is approximated by SA-DCT and a set of two uniform quantizers with fixed step sizes, one for DC and another for AC. Using the approximated texture, we calculated the rate-distortion based cost. The segmentation using recursive merging is performed by using the rate-distortion based cost. Experimental results for 256$\times$256 Lena show that the region-based coding using the proposed segmentation yields the PSNR improvements of 0.8~ 1.0 dB and 1.2~1.5 dB over that using the rate-distortion based segmentation with DC approximation only and JPEG, respectively.

  • PDF

Automatic Classification Algorithm for Raw Materials using Mean Shift Clustering and Stepwise Region Merging in Color (컬러 영상에서 평균 이동 클러스터링과 단계별 영역 병합을 이용한 자동 원료 분류 알고리즘)

  • Kim, SangJun;Kwak, JoonYoung;Ko, ByoungChul
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.425-435
    • /
    • 2016
  • In this paper, we propose a classification model by analyzing raw material images recorded using a color CCD camera to automatically classify good and defective agricultural products such as rice, coffee, and green tea, and raw materials. The current classifying agricultural products mainly depends on visual selection by skilled laborers. However, classification ability may drop owing to repeated labor for a long period of time. To resolve the problems of existing human dependant commercial products, we propose a vision based automatic raw material classification combining mean shift clustering and stepwise region merging algorithm. In this paper, the image is divided into N cluster regions by applying the mean-shift clustering algorithm to the foreground map image. Second, the representative regions among the N cluster regions are selected and stepwise region-merging method is applied to integrate similar cluster regions by comparing both color and positional proximity to neighboring regions. The merged raw material objects thereby are expressed in a 2D color distribution of RG, GB, and BR. Third, a threshold is used to detect good and defective products based on color distribution ellipse for merged material objects. From the results of carrying out an experiment with diverse raw material images using the proposed method, less artificial manipulation by the user is required compared to existing clustering and commercial methods, and classification accuracy on raw materials is improved.

Hierarchical Image Segmentation Based on HVS Characteristic for Region-Based Very Low Bit Rate Coding (영역기반 초저속 부호화를 위한 인간 시각 체계에 기반한 계층적 영상 분할)

  • Song, Kun-Woen;Park, Young-Sik;Han, Kyu-Phil;Nam, Jae-Yeal;Ha, Yeong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.70-80
    • /
    • 1999
  • In this paper, a new hierarchical image segmentation algorithm based on human visual system(HVS) characteristic is proposed which can efficiently reduce and control transmission information quantity without the degradation of the subjective and objective image quality. It consists of image segmentation based on mathematical morphology and region merging considering HVS characteristic for the pairs of two adjacent regions at each level of the hierarchy. Image segmentation is composed of 3-level hierarchical structure. In the region merging structure of each level, we extract the pairs of two adjacent regions which human vision can't discriminate, and then merge them. The proposed region merging method extracts pairs of two neighbor regions to be merged and performs region merging according to merging priority based on HVS characteristics. The merging priority for each adjacent pair is determined by the proposed merging priority function(MPF). First of all, the highest priority pair is merged. The information control factor is used to regulate the transmission information at each level. The proposed segmentation algorithm can efficiently improve bottleneck problem caused by excessive contour information at region-based very low bit rate coding. And it shows that it is more flexible structure than that of conventional method. In experimental results, though PSNR and the subjective image quality by the proposed algorithm is similar to that of conventional method, the contour information quantity to be transmitted is reduced considerably. Therefore it is an efficient image segmentation algorithm for region-based very low bit rate coding.

  • PDF

A Bayesian Approach to Stereo Matching via Merging Watershed Regions (워터쉐드 영역병합을 이용한 스테레오 정합의 베이지언 접근방법)

  • Kil, Woo-Sung;Kim, Shin-Hyung;Jang, Jong-Whan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.809-812
    • /
    • 2005
  • 본 논문은 세그멘테이션 기반의 스테레오 정합에서 복잡한 장면 정합 시 발생되는 오 정합을 최소화 하는 방법을 제안한다. 이를 위하여, 스테레오 영상의 좌측 영상에 대해 워터쉐드 영상 분할을 이용하여 정합을 위한 feature 를 생성한 다음, 베이지언 프레임웍을 적용하여, 각각의 영역을 비슷한 변이 정보를 가진 것들로 병합한다. 생성되는 정합 패치들은 정합의 모호성이 작게 되어 오 정합이 현저히 줄어 들 뿐만 아니라, 영역간의 콘트라스트가 적은 영상에서도 신뢰할 만한 변이 영상을 생성하게 된다.

  • PDF

The Ellipse Detection using Adaptive Edge Segmentation Based Randomized Hough Transform (적응 에지 세그먼트 기반 Randomized Hough Transform을 이용한 타원 검출)

  • Han, Gwang-Su;Han, Yeong-Jun;Han, Heon-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.157-160
    • /
    • 2007
  • 본 논문에서는 입력 영상의 에지를 단일 세그먼트로 구성하고 같은 타원에 속하는 에지 세그먼트를 병합하여 타원검출의 속도와 정확도를 향상시키는 방법을 제안한다. 먼저 분기점은 이용한 라벨링 기법과 코너 패턴 정합 기법으로 연속된 화소들의 집합인 에지 세그먼트를 만든다. 구성된 에지 세그먼트와 Randomized Hough Transform에 의해 타원을 추정하여 병합하고 타원을 결정한다. 위 과정으로부터 얻어진 병합된 에지 세그먼트 집합 하나가 타원 하나를 구성하므로 입력 영상 내의 전체 타원의 개수를 정확하게 추정할 수 있다. 또한 전체 에지 화소들로 타원을 검출하는 기존 방법과 달리 분리된 에지 세그먼트 단위로 타원 변수를 결정하기 때문에 전체 수행시간을 크게 줄일 수 있다.

  • PDF

Block-based Color Image Segmentation Using Cylindrical Metric (Cylindrical metric을 사용한 블록기반 컬러 영상 분할)

  • Nam Hyeyoung;Kim Boram;Kim Wookhyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.7-14
    • /
    • 2005
  • In this paper we proposed the block-based color image segmentation method using the cylindrical metric to solve the problems such as long processing time and over segmentation due to noise and texture properties in the conventional methods. In the proposed method we define the new similarity function and the merge condition between regions to merge initial regions with the same size considering the color and texture properties of chromatic and achromatic regions which is defined according to the HSI color values, and we continue to merge boundary blocks into the adjacent region already segmented to maintain edges until the size of block is one. In the simulation results the proposed method is better than the conventional methods in the evaluation of the segmented regions of texture and edge region, and we found that the processing time is decreased by factor of two in the proposed method.

Leukocyte Segmentation using Saliency Map and Stepwise Region-merging (중요도 맵과 단계적 영역병합을 이용한 백혈구 분할)

  • Gim, Ja-Won;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.239-248
    • /
    • 2010
  • Leukocyte in blood smear image provides significant information to doctors for diagnosis of patient health status. Therefore, it is necessary step to separate leukocyte from blood smear image among various blood cells for early disease prediction. In this paper, we present a saliency map and stepwise region merging based leukocyte segmentation method. Since leukocyte region has salient color and texture, we create a saliency map using these feature map. Saliency map is used for sub-image separation. Then, clustering is performed on each sub-image using mean-shift. After mean-shift is applied, stepwise region-merging is applied to particle clusters to obtain final leukocyte nucleus. The experimental results show that our system can indeed improve segmentation performance compared to previous researches with average accuracy rate of 71%.

Multi-Modal based ViT Model for Video Data Emotion Classification (영상 데이터 감정 분류를 위한 멀티 모달 기반의 ViT 모델)

  • Yerim Kim;Dong-Gyu Lee;Seo-Yeong Ahn;Jee-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.9-12
    • /
    • 2023
  • 최근 영상 콘텐츠를 통해 영상물의 메시지뿐 아니라 메시지의 형식을 통해 전달된 감정이 시청하는 사람의 심리 상태에 영향을 주고 있다. 이에 따라, 영상 콘텐츠의 감정을 분류하는 연구가 활발히 진행되고 있고 본 논문에서는 대중적인 영상 스트리밍 플랫폼 중 하나인 유튜브 영상을 7가지의 감정 카테고리로 분류하는 여러 개의 영상 데이터 중 각 영상 데이터에서 오디오와 이미지 데이터를 각각 추출하여 학습에 이용하는 멀티 모달 방식 기반의 영상 감정 분류 모델을 제안한다. 사전 학습된 VGG(Visual Geometry Group)모델과 ViT(Vision Transformer) 모델을 오디오 분류 모델과 이미지 분류 모델에 이용하여 학습하고 본 논문에서 제안하는 병합 방법을 이용하여 병합 후 비교하였다. 본 논문에서는 기존 영상 데이터 감정 분류 방식과 다르게 영상 속에서 화자를 인식하지 않고 감정을 분류하여 최고 48%의 정확도를 얻었다.

  • PDF

A Study of ATM filter for Resolving the Over Segmentation in Image Segmentation of Region-based method (영역기반 방법의 영상 분할에서 과분할 방지를 위한 Adaptive Trimmed Mean 필터에 관한 연구)

  • Lee, Wan-Bum
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.42-47
    • /
    • 2007
  • Video Segmentation is an essential part in region-based video coding and any other fields of the video processing. Among lots of methods proposed so far, the watershed method in which the region growing is performed for the gradient image can produce well-partitioned regions globally without any influence on local noise and extracts accurate boundaries. But, it generates a great number of small regions, which we call over segmentation problem. Therefore we proposes that adaptive trimmed mean filter for resolving the over segmentation of image. Simulation result, we confirm that proposed ATM filter improves the performance to remove noise and reduces damage for the clear degree of image in case of the noise ratio of 20% and over.