• Title/Summary/Keyword: 영상 레이저레이다

Search Result 12, Processing Time 0.023 seconds

스터드 기반의 레이저 레이다 삼차원 영상센서기술

  • Min, Bong-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.120-120
    • /
    • 2013
  • 본 발표에서는 최근 무인전투기 및 무인자율주행차량 등의 어플리케이션에 응용되고 있는 삼차원 영상 센서 시스템 기술에 관한 소개와 더불어 한국전자통신연구원에서 독자적인 구도를 기반으로 최근 시연에 성공한 스터드(STUD) 레이저 레이다의 동작원리 및 구현결과를 소개하고자 한다. 최근 전세계의 삼차원 레이저 영상 센서 시스템은 1) 한 관측점을 회전을 통해 스캔하는 2D 스캔 방식에서 벗어나, 2) 일차원 배열 형태로 구현된 관측점을 센서가 회전하면서 얻어지는 3D 스캔 방식과 3) 이차원 어레이 형태의 검출기로 삼차원 영상을 검출하는 방식으로 삼차원 영상을 확보하는 노력으로 구분되어 진행되어 왔다. 이번 시연에 성공한 제안된 방법은, 기존의구도와는 다른 독자적인 방식으로, 대면적 검출기를 기반으로 센서부가 회전하지 않으면서, 하나로 통합된 검출기 출력을 이용할 수 있는 구도인 스터드(STUD: STatic and Unitary Detector)기반의 삼차원 레이저 레이다 시스템이다. 최근 구현 결과는 수평해상도 320, 수직해상도 240인 QVGA 영상 수준으로, 이는 지금까지 세계 최고해상도인 ASC사의 128x128 해상도를 뛰어 넘는 우수한 결과이다. 제안된독자적인 구도의 삼차원 레이저 영상 시스템은 다양한 관련 기술들과의 접목하여 향후 군수용 뿐만아니라 민수용 시장의 기술발전에 큰 영향을 미칠 것으로 예상되고 있다.

  • PDF

Development of the Railway Abrasion Measurement System using Camera Model and Perspective Transformation (카메라 모델과 투시 변환에 의한 레일 마모도 측정 시스템 개발)

  • Ahn, Sung-Hyuk;Kang, Dong-Eun;Moon, Hyoung-Deuk;Park, So-Yeon;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1069-1077
    • /
    • 2008
  • The railway abrasion measurement system have to satisfy two conditions to increase the measurement accuracy as follows. The laser region which is projected on the rail have to be extracted without the geometrical distortion. The mapping of the acquired laser region data on the rail profile have to be processed exactly. But, the conventional railway abrasion measurement system is deeply effected by the foreign substance( dust, rainwater, and so on ) on the railway or the sensitive response characteristic of the laser to the external measurement circumstance, and then the measurement errors arise from above factors. When the laser region is projected on the rail extracts from the acquired image, the interference of the light with the same frequency as the laser system occurs the serious problems. In the process of the mapping between the railway profile and the extracted laser region, the measurement accuracy is very highly effected by the geometrical distortion and the abnormal variation. In this Paper, we propose the novel method to increase the accuracy of the railway abrasion measurement dramatically. we designed and manufactured the high precision and fast image processing board with DSP Core and FPGA to measure the railway abrasion. The image processing board has the capability that the image of 1024X1280 from camera can be processed with the speed of 480 frame/sec. And, we apply the image processing algorithm base on the wavelet to extract the laser region is projected on the rail exactly. Finally, we developed high precision railway abrasion measurement system with the error range less than +/-0.5mm by which 2D image data is covered 3D data and mapped on the rail profile using the camera model and the perspective transform.

  • PDF

Development of the 3D Rail Profile Reconstruction Method Improving the Measurement Accuracy of Railway Abrasion (레일 마모도의 측정 정밀도 향상을 위한 3차원 레일 프로파일 재구성 기법 개발)

  • Ahn, Sung-Hyuk;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.533-539
    • /
    • 2010
  • The The contactless railway abrasion measurement system have to satisfy two conditions to increase the measurement accuracy as follows. The laser region projected on the rail have to be extracted without the geometrical distortion. The mapping of the acquired laser region data on the rail profile have to be matched with the cross section of rail, exactly. But, the conventional railway abrasion measurement system is required the post image processing with a camera model and a perspective transform for the exact mapping between the cross section of rail and the coordinate data extracted from a line laser region or the raw image obtained from a camera because the image captured from the camera has an oblique viewpoint. So, the measured rail profile data had limits to the measurement accuracy because of a discontinuity point. In this Paper, we propose the 3D rail profile reconstruction method to increase the accuracy of the railway abrasion measurement system applying the modified camera model and perspective transform to the image obtained from the bidirectional rail.

  • PDF

Image Quality Evaluation for the Railway Abrasion Measurement with a High Resolution (고해상도 레일 마모도 측정을 위한 영상 평가)

  • Ahn, Sung-Hyuk;Kim, Man-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.887-894
    • /
    • 2009
  • There is no standard rule for the test of the railway abrasion measurement system composed of the line laser and the camera. This paper is proposed of the method to estimate the performance of the railway abrasion measurement system. The performance estimation is achieved by the quantitative analysis parameters such as MTF, NPS and DQE.

Simulation and Performance Assessment of a Geiger-mode Imaging LADAR System (가이거모드 영상 LADAR 시스템의 시뮬레이션과 성능예측)

  • Kim, Seongjoon;Lee, Impyeong;Lee, Youngcheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.687-698
    • /
    • 2012
  • LADAR systems can rapidly acquire 3D point clouds by sampling the target surfaces using laser pulses. Such point clouds are widely used for diverse applications such as DSM/DTM generation, forest biomass estimation, target detection, wire avoidance and so on. Many kinds of LADAR systems have been developed with their respective purposes and applications. Particularly, Geiger mode imaging LADAR systems are increasingly utilized since they are energy efficient thank to extremely sensitive detectors incorporated into the systems. The purpose of this research is the performance assessment of a Geiger mode imaging LADAR system based on simulation with the real system parameters. We thus developed a simulation method of such a LADAR system by modeling its geometric, radiometric, optic and electronic aspects. Based on the simulation, we performed the performance assessment of a newly designed system to derive the outlier ratio and false alarm rate expected during its operation in almost real environment with reasonable system parameters. The proposed simulation and performance assessment method will be effectively utilized for system design and optimization, and test data generation.

System Design and Performance Analysis of 3D Imaging Laser Radar for the Mapping Purpose (맵핑용 3차원 영상 레이저 레이다의 시스템 설계 및 성능 분석)

  • La, Jongpil;Ko, Jinsin;Lee, Changjae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • The system design and the system performance analysis of 3D imaging laser radar system for the mapping purpose is addressed in this article. For the mapping, a push-bloom scanning method is utilized. The pulsed fiber laser with high pulse energy and high pulse repetition rate is used for the light source of laser radar system. The high sensitive linear mode InGaAs avalanche photo-diode is used for the laser receiver module. The time-of-flight of laser pulse from the laser to the receiver is calculated by using high speed FPGA based signal processing board. To reduce the walk error of laser pulse regardless of the intensity differences between pulses, the time of flight is measured from peak to peak of laser pulses. To get 3D image with a single pixel detector, Risley scanner which stirs the laser beam in an ellipsoidal pattern is used. The system laser energy budget characteristics is modeled using LADAR equation, from which the system performances such as the pulse detection probability, false alarm and etc. are analyzed and predicted. The test results of the system performances are acquired and compared with the predicted system performance. According to test results, all the system requirements are satisfied. The 3D image which was acquired by using the laser radar system is also presented in this article.

Long Distance and High Resolution Three-Dimensional Scanning LIDAR with Coded Laser Pulse Waves (레이저 펄스 부호화를 이용한 원거리 고해상도 3D 스캐닝 라이다)

  • Kim, Gunzung;Park, Yongwan
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.4
    • /
    • pp.133-142
    • /
    • 2016
  • This paper presents the design and simulation of a three-dimensional pixel-by-pixel scanning light detection and ranging (LIDAR) system with a microelectromechanical system (MEMS) scanning mirror and direct sequence optical code division multiple access (DS-OCDMA) techniques. It measures a frame with $848{\times}480$ pixels at a refresh rate of 60 fps. The emitted laser pulse waves of each pixel are coded with DS-OCDMA techniques. The coded laser pulse waves include the pixel's position in the frame, and a checksum. The LIDAR emits the coded laser pulse waves periodically, without idle listening time to receive returning light at the receiver. The MEMS scanning mirror is used to deflect and steer the coded laser pulse waves to a specific target point. When all the pixels in a frame have been processed, the travel time is used by the pixel-by-pixel scanning LIDAR to generate point cloud data as the measured result.

야시장비의 기술현황 및 발전추세

  • Hong, Seok-Min;Song, In-Seop
    • Defense and Technology
    • /
    • no.10 s.236
    • /
    • pp.66-75
    • /
    • 1998
  • 전자광학장비중 야시장비는 다른 정보 장비들이 주로 탐지를 위주로 하는 것에 비해 물체의 실제 모양을 영상으로 관측하게 함으로써 가장 확실한 정보를 제공하여 신속한 대응 조치를 강구할 수 있도록 한다. 즉, 정확한 표적 식별과 적시성이 유지되어 정밀 타격이 가능하며 아울러 효과 분석까지 용이하여 추가 대책을 강구할 수 있다. 특히 최근의 야시장비는 레이저 또는 레이다 장비들과는 달리 전자파를 방출하지 않는 수동형 센서로 대부분 개발되므로 적에게 노출될 위험이 매우 적다

  • PDF

A Study on the Synthetic Aperture Radar Processor using AOD/CCD (AOD/CCD를 이용한 합성개구면 레이다 처리기에 관한 연구)

  • 박기환;이영훈;이영국;은재정;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.1957-1964
    • /
    • 1994
  • In this thesis, a Synthetic Aperture Rarar Processor that is possible real-time handling is implemented using CW(Continuose Wave) laser as a light source, CCD(charge Coupled Device) as a time integrator, and AOD(Acousto-Optic Device) as the space integrator. One of the advantages of the proposed system is that it does not require driving circuits of the light source. To implement the system, the linear frequency modulation(chirp) technique has been used for radar signal. The received data for the unit target was processed using 7.80 board and accompanying electronic circuits. In order to reduce the smear effect of the focused chirp signal which occurs Bragg diffrection angle of the AOD has been utilized to make sharp pulses of the laser source, and the pulse made synchronized with the chirp signal. Experiment and analysis results of the data and images detected from CCD of the proposed SAR system demonstrated that detection effect is degrated as the unit target distance increases, and the resolving power is improved as the bandwidth of the chirp signal increases. Also, as the pulse width of the light source decreases, the smear effect has been reduced. The experimental results assured that the proposed system in this papre can be used as a real time SAR processor.

  • PDF

Simulation of Ladar Range Images based on Linear FM Signal Analysis (Linear FM 신호분석을 통한 Ladar Range 영상의 시뮬레이션)

  • Min, Seong-Hong;Kim, Seong-Joon;Lee, Im-Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.2
    • /
    • pp.87-95
    • /
    • 2008
  • Ladar (Laser Detection And Ranging, Lidar) is a sensor to acquire precise distances to the surfaces of target region using laser signals, which can be suitably applied to ATD (Automatic Target Detection) for guided missiles or aerial vehicles recently. It provides a range image in which each measured distance is expressed as the brightness of the corresponding pixel. Since the precise 3D models can be generated from the Ladar range image, more robust identification and recognition of the targets can be possible. If we simulate the data of Ladar sensor, we can efficiently use this simulator to design and develop Ladar sensors and systems and to develop the data processing algorithm. The purposes of this study are thus to simulate the signals of a Ladar sensor based on linear frequency modulation and to create range images from the simulated Ladar signals. We first simulated the laser signals of a Ladar using FM chirp modulator and then computed the distances from the sensor to a target using the FFT process of the simulated signals. Finally, we created the range image using the distances set.

  • PDF