• 제목/요약/키워드: 영상 기하학

Search Result 319, Processing Time 0.023 seconds

Automatic Registration of High Resolution Satellite Images using Local Properties of Tie Points (지역적 매칭쌍 특성에 기반한 고해상도영상의 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Choi, Jae-Wan;Han, Dong-Yeob;Kim, -Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.353-359
    • /
    • 2010
  • In this paper, we propose the automatic image-to-image registration of high resolution satellite images using local properties of tie points to improve the registration accuracy. A spatial distance between interest points of reference and sensed images extracted by Scale Invariant Feature Transform(SIFT) is additionally used to extract tie points. Coefficients of affine transform between images are extracted by invariant descriptor based matching, and interest points of sensed image are transformed to the reference coordinate system using these coefficients. The spatial distance between interest points of sensed image which have been transformed to the reference coordinates and interest points of reference image is calculated for secondary matching. The piecewise linear function is applied to the matched tie points for automatic registration of high resolution images. The proposed method can extract spatially well-distributed tie points compared with SIFT based method.

GCP Chip Automatic Extraction of Satellite Imagery Using Interest Point in North Korea (특징점 추출기법을 이용한 접근불능지역의 위성영상 GCP 칩 자동추출)

  • Lee, Kye Dong;Yoon, Jong Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.211-218
    • /
    • 2019
  • The Ministry of Land, Infrastructure and Transport is planning to launch CAS-500 (Compact Advanced Satellite 500) 1 and 2 in 2019 and 2020. Satellite image information collected through CAS-500 can be used in various fields such as global environmental monitoring, topographic map production, analysis for disaster prevention. In order to utilize in various fields like this, it is important to get the location accuracy of the satellite image. In order to establish the precise geometry of the satellite image, it is necessary to establish a precise sensor model using the GCP (Ground Control Point). In order to utilize various fields, step - by - step automation for orthoimage construction is required. To do this, a database of satellite image GCP chip should be structured systematically. Therefore, in this study, we will analyze various techniques for automatic GCP extraction for precise geometry of satellite images.

A Study on the Development of YOLO-Based Maritime Object Detection System through Geometric Interpretation of Camera Images (카메라 영상의 기하학적 해석을 통한 YOLO 알고리즘 기반 해상물체탐지시스템 개발에 관한 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.499-506
    • /
    • 2022
  • For autonomous ships to be commercialized and be able to navigate in coastal water, they must be able to detect maritime obstacles. One of the most common obstacles seen in coastal area are the farm buoys. In this study, a maritime object detection system was developed that detects buoys using the YOLO algorithm and visualizes the distance and bearing between buoys and the ship through geometric interpretation of camera images. After training the maritime object detection model with 1,224 pictures of buoys, the precision of the model was 89.0%, the recall was 95.0%, and the F1-score was 92.0%. Camera calibration had been conducted to calculate the distance and bearing of an object away from the camera using the obtained image coordinates and Experiment A and B were designed to verify the performance of the maritime object detection system. As a result of verifying the performance of the maritime object detection system, it can be seen that the maritime object detection system is superior to radar in its short-distance detection capability, so that it can be used as a navigational aid along with the radar.

Using 3D Sweetening for Efficient Directing Space in Stereoscopic Image (3D 스위트닝 과정을 이용한 입체영상의 효율적인 공간 연출)

  • Kim, Myung-Ha;Hong, Hyun-Ki
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.10
    • /
    • pp.63-71
    • /
    • 2012
  • Depth understanding is important for stereoscopic and various methods including space design and cognitive science should be taken account in contents production. Among them, human scientific engineering such as human factor needs to be touched. More specifically, when the stereoscopic designer determines a binocular disparity, the viewpoint of the camera has to be matched with that of the audience. In this process, the structural problem by the distortion due to the dichoptic error is happened, Therefore, 3D sweetening process based on geometric re-analysis and human scientific engineering to minimize the visual fatigue is significant. This paper analyzes the inconsistency problems of the viewpoint in stereoscopic images, and we produce the stereoscopic image contents based on human factors.

SPOT Camera Modeling Using Auxiliary Data (영상보조자료를 이용한 SPOT 카메라 모델링)

  • 김만조;차승훈;고보연
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2003
  • In this paper, a camera modeling method that utilizes ephemeris data and imaging geometry is presented. The proposed method constructs a mathematical model only with parameters that are contained in auxiliary files and does not require any ground control points for model construction. Control points are only needed to eliminate geolocation error of the model that is originated from errors embedded in the parameters that are used in model construction. By using a few (one or two) control points, RMS error of around pixel size can be obtained and control points are not necessarily uniformly distributed in line direction of the scene. This advantage is crucial in large-scale projects and will enable to reduce project cost dramatically.

Epipolar Resampling Module for CAS500 Satellites 3D Stereo Data Processing (국토위성 3차원 데이터 생성을 위한 입체 기하 영상 생성 모듈 제작 및 테스트)

  • Oh, Jaehong;Lee, Changno
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.939-948
    • /
    • 2020
  • CAS500-1 and CAS500-2 are high-resolution Earth-observing satellites being developed and scheduled to launch for land monitoring of Korea. The satellite information will be used for land usage analysis, change detection, 3D topological monitoring, and so on. Satellite image data of region of interests must be acquired in the stereo mode from different positions for 3D information generation. Accurate 3D processing and 3D display of stereo satellite data requires the epipolar image resampling process considering the pushbroom sensor and the satellite trajectory. This study developed an epipolar image resampling module for CAS-500 stereo data processing and verified its accuracy performance by testing along-track, across-track, and heterogeneous stereo data.

Color stereo image matching for self-calibration (셀프 캘리브레이션을 위한 컬러 스테레오 이미지의 대응 관계 추출)

  • Kim, Do-Yoon;Chung, Hyung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2528-2530
    • /
    • 2002
  • 본 연구에서는 캘리브레이션 박스와 같은 사전에 약속된 물체를 사용하지 않고 일반적인 환경(unstructured environment)의 컬러 스테레오 영상으로부터 특징점을 찾고, 특징점 사이의 대응관계를 사용자 개입 없이 파악하는 방법에 대해 소개한다. 또한 찾은 대응관계를 이용해 스테레오 카메라 사이의 에피폴라 기하학(epipolar geometry) 관계를 계산하여 셀프 캘리브레이션에 이용한다. 이와 유사한 연구는 많이 진행되어 왔으나 대부분의 연구가 흑백 영상에서 진행되어 왔다. 본 연구에서는 컬러 이미지의 속성을 이용해 흑백 영상을 이용할 때보다 외부 환경의 변화에 강인하며, 정밀한 대응 관계를 찾을 수 있음을 실험을 통해 보인다.

  • PDF

Adjustment of Exterior Orientation Parameters Geometric Registration of Aerial Images and LIDAR Data (항공영상과 라이다데이터의 기하학적 정합을 위한 외부표정요소의 조정)

  • Hong, Ju-Seok;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.585-597
    • /
    • 2009
  • This research aims to develop a registration method to remove the geometric inconsistency between aerial images and LIDAR data acquired from an airborne multi-sensor system. The proposed method mainly includes registration primitives extraction, correspondence establishment, and EOP(Exterior Orientation Parameters) adjustment. As the registration primitives, we extracts planar patches and intersection edges from the LIDAR data and object points and linking edges from the aerial images. The extracted primitives are then categorized into horizontal and vertical ones; and their correspondences are established. These correspondent pairs are incorporated as stochastic constraints into the bundle block adjustment, which finally precisely adjusts the exterior orientation parameters of the images. According to the experimental results from the application of the proposed method to real data, we found that the attitude parameters of EOPs were meaningfully adjusted and the geometric inconsistency of the primitives used for the adjustment is reduced from 2 m to 2 cm before and after the registration. Hence, the results of this research can contribute to data fusion for the high quality 3D spatial information.

Geometric Modelling and Coordinate Transformation of Satellite-Based Linear Pushbroom-Type CCD Camera Images (선형 CCD카메라 영상의 기하학적 모델 수립 및 좌표 변환)

  • 신동석;이영란
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.85-98
    • /
    • 1997
  • A geometric model of pushbroom-type linear CCD camera images is proposed in this paper. At present, this type of cameras are used for obtaining almost all kinds of high-resolution optical images from satellites. The proposed geometric model includes not only a forward transformation which is much more efficient. An inverse transformation function cannot be derived analytically in a closed form because the focal point of an image varies with time. In this paper, therefore, an iterative algorithm in which a focal point os converged to a given pixel position is proposed. Although the proposed model can be applied to any pushbroom-type linear CCD camera images, the geometric model of the high-resolution multi-spectral camera on-board KITSAT-3 is used in this paper as an example. The flight model of KITSAT-3 is in development currently and it is due to be launched late 1998.

Comparison of Co-registration Algorithms for TOPS SAR Image (TOPS 모드 SAR 자료의 정합기법 비교분석)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1143-1153
    • /
    • 2018
  • For TOPS InSAR processing, high-precision image co-registration is required. We propose an image co-registration method suitable for the TOPS mode by comparing the performance of cross correlation method, the geometric co-registration and the enhanced spectral diversity (ESD) matching algorithm based on the spectral diversity (SD) on the Sentinel-1 TOPS mode image. Using 23 pairs of interferometric pairs generated from 25 Sentinel-1 TOPS images, we applied the cross correlation (CC), geometric correction with only orbit information (GC1), geometric correction combined with iterative cross-correlation (GC2, GC3, GC4), and ESD iteration (ESD_GC, ESD_1, ESD_2). The mean of co-registration errors in azimuth direction by cross correlation and geometric matching are 0.0041 pixels and 0.0016 pixels, respectively. Although the ESD method shows the most accurate result with the error of less than 0.0005 pixels, the error of geometric co-registration is reduced to 0.001 pixels by repetition through additional cross correlation matching between the reference and resampled slave image. The ESD method is not applicable when the coherence of the burst overlap areas is low. Therefore, the geometric co-registration method through iterative processing is a suitable alternative for time series analysis using multiple SAR data or generating interferogram with long time intervals.