• Title/Summary/Keyword: 영상 기하학

Search Result 321, Processing Time 0.019 seconds

Change Detection of a Small Town Area from Multi-Temporal Aerial Photos using Image Differencing and Image Ratio Techniques (다시기 항공사진으로부터 영상대차법과 영상대비법을 이용한 소도읍 지역의 변화 검출)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Lee, Dong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.116-124
    • /
    • 2008
  • This study presents the application of multi-temporal and multi-scale panchromatic aerial photos for change detection in a small urban area. For aerial photos of the scale of 1:20,000 taken in 1987 and 1996 and the scale of 1:37,500 taken in 2000. Pre-processing that make the same conditions to all of the aerial photos was carried out through geometric correction, registration, contrasting, resamplimg, and mosaicking and then change detection were carried out respectively by image differencing and image ratio techniques. As a result, the change of urban features and landcover were able to be detected from panchromatic aerial photos that is single-band images and then the detected change results were compared between both techniques.

  • PDF

Selective Histogram Matching of Multi-temporal High Resolution Satellite Images Considering Shadow Effects in Urban Area (도심지역의 그림자 영향을 고려한 다시기 고해상도 위성영상의 선택적 히스토그램 매칭)

  • Yeom, Jun-Ho;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • Additional high resolution satellite images, other period or site, are essential for efficient city modeling and analysis. However, the same ground objects have a radiometric inconsistency in different satellite images and it debase the quality of image processing and analysis. Moreover, in an urban area, buildings, trees, bridges, and other artificial objects cause shadow effects, which lower the performance of relative radiometric normalization. Therefore, in this study, we exclude shadow areas and suggest the selective histogram matching methods for image based application without supplementary digital elevation model or geometric informations of sun and sensor. We extract the shadow objects first using adjacency informations with the building edge buffer and spatial and spectral attributes derived from the image segmentation. And, Outlier objects like a asphalt roads are removed. Finally, selective histogram matching is performed from the shadow masked multi-temporal Quickbird-2 images.

Updating Building Layer of Digital Map Using Airborne Digital Camera Image (디지털항공영상을 이용한 수치지도의 건물레이어 갱신)

  • Hwang, Won-Soon;Kim, Kam-Rae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.31-39
    • /
    • 2007
  • As the availability of images from airborne digital camera with high resolution is expanded, a lot of concern are shown about the production of orthoimage and digital map. This study presents the method of updating digital map using orthoimage from airborne digital camera image. Images were georectified using GPS surveying data. For the generation of orthoimage, Lidar DEM was used. The absolute positional accuracy of orthoimage was evaluated using GPS surveying data. And that of the building layer of digital map was estimated using the existed digital map at the scale of 1:1,000. The absolute positional accuracy of orthoimage was as followed: RMSE in X and Y were ${\pm}0.076m$ and ${\pm}0.294m$. The RMSE of the building layer were ${\pm}0.250m$ and ${\pm}0.210m$ in X and Y directions, respectively. The RMSE of the digital map using orthoimage from Aerial Digital Camera image fell within allowable error range established by NGII. Consequently, updating digital map using orthoimage from Aerial Digital Camera image can be applied to various fields including the construction of the framework data and the GIS of local government.

  • PDF

Comparison of Match Candidate Pair Constitution Methods for UAV Images Without Orientation Parameters (표정요소 없는 다중 UAV영상의 대응점 추출 후보군 구성방법 비교)

  • Jung, Jongwon;Kim, Taejung;Kim, Jaein;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.647-656
    • /
    • 2016
  • Growth of UAV technology leads to expansion of UAV image applications. Many UAV image-based applications use a method called incremental bundle adjustment. However, incremental bundle adjustment produces large computation overhead because it attempts feature matching from all image pairs. For efficient feature matching process we have to confine matching only for overlapping pairs using exterior orientation parameters. When exterior orientation parameters are not available, we cannot determine overlapping pairs. We need another methods for feature matching candidate constitution. In this paper we compare matching candidate constitution methods without exterior orientation parameters, including partial feature matching, Bag-of-keypoints, image intensity method. We use the overlapping pair determination method based on exterior orientation parameter as reference. Experiment results showed the partial feature matching method in the one with best efficiency.

Development and application of simulator for spotlight SAR image formation and quality assesment using RMA (RMA를 이용한 Spotlight SAR 영상형성 및 품질평가를 위한 시뮬레이터 개발 및 구현)

  • Kwak, Jun-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.183-194
    • /
    • 2011
  • Synthetic aperture radar (SAR) is widely used because of high resolution imaging capability in all weather and day/night condition. In this paper development of Spotlight SAR simulator is proposed for image quality analysis. Proposed SAR simulator is based on the SAR system design parameters so that SAR image performance can be expected which is essential throughout the full system development procedure from the initial concept design stage to the final in-flight calibration and validation stage. The raw data of ideal point target is first generated by taking account of the flight and imaging geometry and the various SAR system design parameters, and the Spotlight image formation algorithm is implemented in order to obtain the point target response. Finally the image quality of the generated raw data is analyzed in terms of spatial resolution, peak to sidelobe ratio and integrated sidelobe ratio.

Computation of 3D Coordinates from Stereo Images with RPCs (RPC를 이용한 Stereo 영상으로부터의 3차원 좌표 추출)

  • Kim Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.135-143
    • /
    • 2005
  • RPC(Rational Polynomial Camera) models have become the replacement model of choice for a number of high resolution satellite imagery providers. RPCs(Rational Polynomial Coefficients) provide a compact accurate representation of the ground to image geometry, allowing users to perform full photogrammetric processing of satellite imagery including block adjustment, 3D feature extraction and orthorectification. This paper presents an algorithm for 3D feature extraction using downhill simpler method which requires only function evaluations, not derivatives. The algorithm was implemented as an executable software program and tested using stereo IKONOS images of Seoul city. The results showed that the proposed algorithm was fast and accurate enough to be used as a practical method for the 3D feature extraction from stereo images with RPCs.

Automatic Extraction of Training Dataset Using Expectation Maximization Algorithm - for Automatic Supervised Classification of Road Networks (기대최대화 알고리즘을 활용한 도로노면 training 자료 자동추출에 관한 연구 - 감독분류를 통한 도로 네트워크의 자동추출을 위하여)

  • Han, You-Kyung;Choi, Jae-Wan;Lee, Jae-Bin;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.289-297
    • /
    • 2009
  • In the paper, we propose the methodology to extract training dataset automatically for supervised classification of road networks. For the preprocessing, we co-register the airborne photos, LIDAR data and large-scale digital maps and then, create orthophotos and intensity images. By overlaying the large-scale digital maps onto generated images, we can extract the initial training dataset for the supervised classification of road networks. However, the initial training information is distorted because there are errors propagated from registration process and, also, there are generally various objects in the road networks such as asphalt, road marks, vegetation, cars and so on. As such, to generate the training information only for the road surface, we apply the Expectation Maximization technique and finally, extract the training dataset of the road surface. For the accuracy test, we compare the training dataset with manually extracted ones. Through the statistical tests, we can identify that the developed method is valid.

Training Performance Analysis of Semantic Segmentation Deep Learning Model by Progressive Combining Multi-modal Spatial Information Datasets (다중 공간정보 데이터의 점진적 조합에 의한 의미적 분류 딥러닝 모델 학습 성능 분석)

  • Lee, Dae-Geon;Shin, Young-Ha;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.91-108
    • /
    • 2022
  • In most cases, optical images have been used as training data of DL (Deep Learning) models for object detection, recognition, identification, classification, semantic segmentation, and instance segmentation. However, properties of 3D objects in the real-world could not be fully explored with 2D images. One of the major sources of the 3D geospatial information is DSM (Digital Surface Model). In this matter, characteristic information derived from DSM would be effective to analyze 3D terrain features. Especially, man-made objects such as buildings having geometrically unique shape could be described by geometric elements that are obtained from 3D geospatial data. The background and motivation of this paper were drawn from concept of the intrinsic image that is involved in high-level visual information processing. This paper aims to extract buildings after classifying terrain features by training DL model with DSM-derived information including slope, aspect, and SRI (Shaded Relief Image). The experiments were carried out using DSM and label dataset provided by ISPRS (International Society for Photogrammetry and Remote Sensing) for CNN-based SegNet model. In particular, experiments focus on combining multi-source information to improve training performance and synergistic effect of the DL model. The results demonstrate that buildings were effectively classified and extracted by the proposed approach.

Scanner Calibration Method for Higher Accuracy at Acquisition of Digital Imagery Data in GSIS (지형공간정보체계에서 수치영상자료 취득의 정확도 향상을 위한 주사기의 검정 방법)

  • Choi, Chul-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.153-158
    • /
    • 1993
  • It is important to establish the transformational relation between scanned image coordinates and digital image coordinates because the coordinate system of digital image is transformed from scanned image coordinate system through scanning work. And, some researches are required in scanning works to correct the deformation that is due to the motion of scanner. In this study, some procedures are applied to determine the optimal calibration model equation which can calibrate the scanner. As a result the optimal calibration model equation for the object scanner is determined The procedure of this study can applied to the calibration of other types of scanner, because the procedures are done with the analysis of geometrical properties rather than the analysis of physical properties.

  • PDF

Acquiring Precise Coordinates of Ground Targets through GCP Geometric Correction of Captured Images in UAS (무인 항공 시스템에서 촬영 영상의 GCP 기하보정을 통한 정밀한 지상 표적 좌표 획득 방법)

  • Namwon An;Kyung-Mee Lim;So-Young Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.129-138
    • /
    • 2023
  • Acquiring precise coordinates of ground targets can be regarded as the key mission of the tactical-level military UAS(Unmanned Aerial System) operations. The coordinates deviations for the ground targets estimated from UAV (Unmanned Aerial Vehicle) images may depend on the sensor specifications and slant ranges between UAV and ground targets. It has an order of several tens to hundreds of meters for typical tactical UAV mission scenarios. In this paper, we propose a scheme that precisely acquires target coordinates from UAS by mapping image pixels to geographical coordinates based on GCP(Ground Control Points). This scheme was implemented and tested from ground control station for UAS. We took images of targets of which exact location is known and acquired the target coordinates using our proposed scheme. The experimental results showed that errors of the acquired coordinates remained within an order of several meters and the coordinates accuracy was significantly improved.