• Title/Summary/Keyword: 영상 기하학

Search Result 319, Processing Time 0.023 seconds

A Study on the Analysis of Accuracy of SPOT Photos According to the Preprocessing Level (전처리 수준에 따른 SPOT 위성사진의 정확도 분석에 관한 연구)

  • 유복모;이현직
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.1
    • /
    • pp.83-96
    • /
    • 1991
  • The use of SPOT Imagery is a growing trend in the field of small and middle scale mapping, as well as in establishing topographic database. This study is about 3-D positioning using the SPOT Imagery, where the accuracy and the gemetric characteristics of SPOT photos are analysed according to the preprocessing level (level 1AP,1B). As a result of this study the following could be determined, i. e 1) the geometric characteristics of SPOT Imagery according to the preprocessing level, 2) the optimal polynomial type for exterior orientations of each preprocessing level, and 3) the type of significant additional parameters. It was found that both the geometric precision and accuracy of level 1AP is higher than those of level 1B, which implies that level 1AP is more suitable for precise 3-D positioning and map production.

  • PDF

A Study on Estimating Skill of Smartphone Camera Position using Essential Matrix (필수 행렬을 이용한 카메라 이동 위치 추정 기술 연구)

  • Oh, Jongtaek;Kim, Hogyeom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.143-148
    • /
    • 2022
  • It is very important for metaverse, mobile robot, and user location services to analyze the images continuously taken using a mobile smartphone or robot's monocular camera to estimate the camera's location. So far, PnP-related techniques have been applied to calculate the position. In this paper, the camera's moving direction is obtained using the essential matrix in the epipolar geometry applied to successive images, and the camera's continuous moving position is calculated through geometrical equations. A new estimation method was proposed, and its accuracy was verified through simulation. This method is completely different from the existing method and has a feature that it can be applied even if there is only one or more matching feature points in two or more images.

Quality Analysis of GCP Chip Using Google Map (Google Map을 이용한 GCP 칩의 품질 분석)

  • Park, Hyeongjun;Son, Jong-Hwan;Shin, Jung-Il;Kweon, Ki-Eok;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.907-917
    • /
    • 2019
  • Recently, the demand for high-resolution satellite images increases in many fields such as land monitoring and terrain analysis. Therefore, the need for geometric correction is increasing. As an automatic precision geometric correction method, there is a method of automatically extracting the GCP by matching between the GCP Chip and the satellite image. For automatic precision geometric correction, the success rate of matching GCP Chip and satellite image is important. Therefore, it is important to evaluate the matching performance of the manufactured GCP Chip. In order to evaluate the matching performance of GCP Chips, a total of 3,812 GCP Chips in South Korea were used as experimental data. The GCP Chip matching results of KOMPSAT-3A and Google Map showed similar matching results. Therefore, we determined that Google Map satellite imagery could replace high-resolution satellite imagery. Also, presented a method using center point and error radius of Google Map to reduce the time required to verify matching performance. As a result, it is best to set the optimum error radius to 8.5m. Evaluated the matching performance of GCP Chips in South Korea using Google Maps. And verified matching result using presented method. As a result, the GCP Chip s in South Korea had a matching success rate of about 94%. Also, the main matching failure factors were analyzed by matching failure GCP Chips. As a result, Except for GCP Chips that need to be remanufactured, the remaining GCP Chips can be used for the automatic geometric correction of satellite images.

Analysis of Co-registration Performance According to Geometric Processing Level of KOMPSAT-3/3A Reference Image (KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석)

  • Yun, Yerin;Kim, Taeheon;Oh, Jaehong;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.221-232
    • /
    • 2021
  • This study analyzed co-registration results according to the geometric processing level of reference image, which are Level 1R and Level 1G provided from KOMPSAT-3 and KOMPSAT-3A images. We performed co-registration using each Level 1R and Level 1G image as a reference image, and Level 1R image as a sensed image. For constructing the experimental dataset, seven Level 1R and 1G images of KOMPSAT-3 and KOMPSAT-3A acquired from Daejeon, South Korea, were used. To coarsely align the geometric position of the two images, SURF (Speeded-Up Robust Feature) and PC (Phase Correlation) methods were combined and then repeatedly applied to the overlapping region of the images. Then, we extracted tie-points using the SURF method from coarsely aligned images and performed fine co-registration through affine transformation and piecewise Linear transformation, respectively, constructed with the tie-points. As a result of the experiment, when Level 1G image was used as a reference image, a relatively large number of tie-points were extracted than Level 1R image. Also, in the case where the reference image is Level 1G image, the root mean square error of co-registration was 5 pixels less than the case of Level 1R image on average. We have shown from the experimental results that the co-registration performance can be affected by the geometric processing level related to the initial geometric relationship between the two images. Moreover, we confirmed that the better geometric quality of the reference image achieved the more stable co-registration performance.

2D-3D Vessel Registration for Image-guided Surgery based on distance map (영상유도시술을 위한 거리지도기반 2D-3D 혈관영상 정합)

  • 송수민;최유주;김민정;김명희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.913-915
    • /
    • 2004
  • 시술 중 제공되는 2D영상은 실시간으로 환자와 시술도구의 상태정보를 제공해주지만 환부의 입체적ㆍ해부학적 파악이 어렵다. 따라서 긴 촬영시간으로 시술 전 획득되는 3D영상과 시술 중 얻어지는 2D영상간 정합영상은 영상 유도술에 있어서 유용한 정보를 제공한다. 이를 위해 본 논문에서는 볼륨영상으로부터 혈관모델을 추출하고 이를 평면으로 투영하였다. 두 2D영상에서 정차대상이 되는 혈관골격을 추출한 후 혈관의 분기특성을 고려 한 초기정합을 수행하였다. 크기와 초기 위치를 맞춘 혈관골격을 골격간 거리가 최소가 되도록 반복적으로 혈관을 기하변환시키고 최종 변환된 혈관골격을 시술 중 제공되는 2D영상에 겹쳐 가시화 하였다. 이로써 시술시간 경감과 시술성공률 향상을 유도할 수 있는 시술경로맵을 제시하고자 하였다.

Development of A Simulation for Automatic Installation of Detection Area by Image Detector (영상검지기의 검지영역 자동설정을 위한 모의실험기 개발)

  • 이병호;조형기;오영태;오세창
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.4
    • /
    • pp.139-152
    • /
    • 1998
  • 본 연구에서는 3차원그래픽스를 이용하여 영상검지기에서의 교통정보를 얻기 위한 검지영역 설정시 안정된 검지영역을 찾기 위한 시뮬레이터를 개발하였다. 기존의 영상검지기에서는 사용자가 임의로 검지영역을 설정하여 교통정보를 수집함으로 인하여 안정된 교통정보를 얻기가 어려웠으며, 영상카메라의 설치시 과다한 설치규격의 설정으로 비효율적 측면이 발생될 수 있다. 이러한 단점을 보완하기 위해서는 영상검지기를 현장에 설치하기 전에 영상검지기 설치를 위한 사전 모의실험을 토대로 최적의 안정된 설치위치 결정이 매우 중요하다. 본 연구에서 개발한 모의 실험기는 도로의 기하구조와 차량을 모델화 하고 이를 3차원으로 좌표화하여 좌표변환식과 원근변환식을 이용하여 3차원좌표를 2차원으로 변환시키고 컴퓨터 모니터에 투영하여 대상 설치위치에서의 결과를 가시화하였다. 본 연구는 개발된 모의실험기의 적용성 검토를 위하여 현재 영상검지기를 운영중에 있는 한 접근로를 대상으로 사례연구를 수행하였다. 수행결과 교통량과 통행속도계측시 최적검지영역 설정을 위한 영상검지기의 설치규격은 높이가 각각 7m, 12m이상이며, 수직각은 각각 $30^{\circ}$, $80^{\circ}$인 것으로 나타났다.

  • PDF

Development of Geometrical Quality Control Real-time Analysis Program using an Electronic Portal Imaging (전자포탈영상을 이용한 기하학적 정도관리 실시간 분석 프로그램의 개발)

  • Lee, Sang-Rok;Jung, Kyung-Yong;Jang, Min-Sun;Lee, Byung-Gu;Kwon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.77-84
    • /
    • 2012
  • Purpose: To develop a geometrical quality control real-time analysis program using an electronic portal imaging to replace film evaluation method. Materials and Methods: A geometrical quality control item was established with the Eclipse treatment planning system (Version 8.1, Varian, USA) after the Electronic Portal Imaging Device (EPID) took care of the problems occurring from the fixed substructure of the linear accelerator (CL-iX, Varian, USA). Electronic portal image (single exposure before plan) was created at the treatment room's 4DTC (Version 10.2, Varian, USA) and a beam was irradiated in accordance with each item. The gaining the entire electronic portal imaging at the Off-line review and was evaluated by a self-developed geometrical quality control real-time analysis program. As for evaluation methods, the intra-fraction error was analyzed by executing 5 times in a row under identical conditions and procedures on the same day, and in order to confirm the infer-fraction error, it was executed for 10 days under identical conditions of all procedures and was compared with the film evaluation method using an Iso-align$^{TM}$ quality control device. Measurement and analysis time was measured by sorting the time into from the device setup to data achievement and the time amount after the time until the completion of analysis and the convenience of the users and execution processes were compared. Results: The intra-fraction error values for each average 0.1, 0.2, 0.3, 0.2 mm at light-radiation field coincidence, collimator rotation axis, couch rotation axis and gantry rotation axis. By checking the infer-fraction error through 10 days of continuous quality control, the error values obtained were average 1.7, 1.4, 0.7, 1.1 mm for each item. Also, the measurement times were average 36 minutes, 15 minutes for the film evaluation method and electronic portal imaging system, and the analysis times were average 30 minutes, 22 minutes. Conclusion: When conducting a geometrical quality control using an electronic portal imaging, it was found that it is efficient as a quality control tool. It not only reduces costs through not using films, but also reduces the measurement and analysis time which enhances user convenience and can improve the execution process by leaving out film developing procedures etc. Also, images done with evaluation from the self-developed geometrical quality control real-time analysis program, data processing is capable which supports the storage of information.

  • PDF

Construction, Search of Ground Control Point Database and its Application for Satellite Image Correction (위성영상 보정을 위한 GCP 데이터베이스 구축, 검색 및 활용)

  • Lee, Young-Ran;Shin, Dongseok;Lee, Hae-Yeoun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.1
    • /
    • pp.8-17
    • /
    • 1998
  • This paper presents a method of construction and re-use of a GCP database for precision geometric correction of high resolution satellite images. Accurate geometric correction can be achieved by using accurate GCPs. The GCP information which is extracted from maps or other sources is saved in a database in conjunction with the corresponding image chips. The usage of the GCPs from the database gives reusability and efficiency in marking new GCPs. An image matching algorithm was developed to determine the corresponding positions between an image chip and a new image. The proposed technique can save time in the regular operation of satellite image preprocessing by propagating the pre-determined GCPs to the new image correction.

Topographic Normalization of Satellite Synthetic Aperture Radar(SAR) Imagery (인공위성 레이더(SAR) 영상자료에 있어서 지형효과 저감을 위한 방사보정)

  • 이규성
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.57-73
    • /
    • 1997
  • This paper is related to the correction of radiometric distortions induced by topographic relief. RADARSAT SAR image data were obtained over the mountainous area near southern part of Seoul. Initially, the SAR data was geometrically corrected and registered to plane rectangular coordinates so that each pixel of the SAR image has known topographic parameters. The topographic parameters (slope and aspect) at each pixel position were calculated from the digital elevation model (DEM) data having a comparable spatial resolution with the SAR data. Local incidence angle between the incoming microwave and the surface normal to terrain slope was selected as a primary geometric factor to analyze and to correct the radiometric distortions. Using digital maps of forest stands, several fields of rather homogeneous forest stands were delineated over the SAR image. Once the effects of local incidence angle on the radar backscatter were defined, the radiometric correction was performed by an empirical fuction that was derived from the relationship between the geometric parameters and mean radar backscatter. The correction effects were examined by ground truth data.

Building Roof Reconstruction in Remote Sensing Image using Line Segment Extraction and Grouping (선소의 추출과 그룹화를 이용한 원격탐사영상에서 건물 지붕의 복원)

  • 예철수;전승헌;이호영;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.159-169
    • /
    • 2003
  • This paper presents a method for automatic 3-d building reconstruction using high resolution aerial imagery. First, by using edge preserving filtering, noise is eliminated and then images are segmented by watershed algorithm, which preserves location of edge pixels. To extract line segments between control points from boundary of each region, we calculate curvature of each pixel on the boundary and then find the control points. Line segment linking is performed according to direction and length of line segments and the location of line segments is adjusted using gradient magnitudes of all pixels of the line segment. Coplanar grouping and pplygonal patch formation are performed per region by selecting 3-d line segments that are matched using epipolar geometry and flight information. The algorithm has been applied to high resolution aerial images and the results show accurate 3D building reconstruction.