• 제목/요약/키워드: 영상화질평가

검색결과 481건 처리시간 0.026초

Matching Points Filtering Applied Panorama Image Processing Using SURF and RANSAC Algorithm (SURF와 RANSAC 알고리즘을 이용한 대응점 필터링 적용 파노라마 이미지 처리)

  • Kim, Jeongho;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제51권4호
    • /
    • pp.144-159
    • /
    • 2014
  • Techniques for making a single panoramic image using multiple pictures are widely studied in many areas such as computer vision, computer graphics, etc. The panorama image can be applied to various fields like virtual reality, robot vision areas which require wide-angled shots as an useful way to overcome the limitations such as picture-angle, resolutions, and internal informations of an image taken from a single camera. It is so much meaningful in a point that a panoramic image usually provides better immersion feeling than a plain image. Although there are many ways to build a panoramic image, most of them are using the way of extracting feature points and matching points of each images for making a single panoramic image. In addition, those methods use the RANSAC(RANdom SAmple Consensus) algorithm with matching points and the Homography matrix to transform the image. The SURF(Speeded Up Robust Features) algorithm which is used in this paper to extract featuring points uses an image's black and white informations and local spatial informations. The SURF is widely being used since it is very much robust at detecting image's size, view-point changes, and additionally, faster than the SIFT(Scale Invariant Features Transform) algorithm. The SURF has a shortcoming of making an error which results in decreasing the RANSAC algorithm's performance speed when extracting image's feature points. As a result, this may increase the CPU usage occupation rate. The error of detecting matching points may role as a critical reason for disqualifying panoramic image's accuracy and lucidity. In this paper, in order to minimize errors of extracting matching points, we used $3{\times}3$ region's RGB pixel values around the matching points' coordinates to perform intermediate filtering process for removing wrong matching points. We have also presented analysis and evaluation results relating to enhanced working speed for producing a panorama image, CPU usage rate, extracted matching points' decreasing rate and accuracy.

A Study on the Determination of Scan Speed in Whole Body Bone Scan Applying Oncoflash (Oncoflash를 적용한 전신 뼈 영상 검사의 스캔 속도 결정에 관한 연구)

  • Yang, Gwang-Gil;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • 제13권3호
    • /
    • pp.56-60
    • /
    • 2009
  • Purpose: The various studies and efforts to develop program are in progress in the field of nuclear medicine for the purpose of reducing scan time. The Oncoflash is one of the programs used in whole body bone scan which allows to maintain the image quality while to reduce scan time. When Those applications are used in clinical setting, both the image quality and reduction of scan time should be considered, therefore, the purpose of this study was to determine the criteria for proper scan speed. Materials and Methods: The subjects of this study were the patients who underwent whole body bone scan at the departments of nuclear medicine in the Asan Medical Center located in Seoul from 1st to 10th, July, 2008. The whole body bone images obtained in the scan speed of 30cm/min were classified by the total counts into under 800 K, and over 800 K, 900 K, 1,000 K, 1,500 K, and 2,000 K. The image quality were assessed qualitatively and the percentages of those of 1,000K and under of total counts were calculated. The FWHM before and after applying the Oncoflash were analyzed using images obtained in $^{99m}Tc$ Flood and 4-Quadrant bar phantom in order to compare the resolution according to the amount of total counts by the application of the Oncoflash. Considering the counts of the whole body bone scan, the dosed 2~5 mCi were used. 152 patients underwent the measurement in which the counts of Patient Postioning Monitor (PPM) were measured with including head and the parts of chest which the starting point of whole body bone scan from 7th to 26th, August, 2008. The correlations with total counts obtained in the scan speed of 30cm/min among them were analyzed (The exclusion criteria were after over six hours of applying isotopes or low amount of doses). Results: The percentage of the whole body bone image which has the geometric average of total counts of under 1,000K among them obtained in the scan speed of 30cm/min were 17.6%(n=58) of 329 patients. The qualitative analysis of the image groups according to the whole body counts showed that the images of under 1,000K were assessed to have coarse particles and increased noises. The analysis on the FWHM of the images before and after applying the Oncoflash showed that, in the case of PPM counts of under 3.6 K, FWHM values after applying the Oncoflash were higher than that before applying the Oncoflash, whereas, in the case of that of over 3.6 K, the FWHM after applying the Oncoflash were not higher than that before applying the Oncoflash. The average of total counts at 2.5~3.0 K, 3.1~3.5 K, 3.6~4.0 k, 4.1~4.5 K, 4.6~5.0 K, 5.1~6.0 K, 6.1~7.0 K, and 7.1 K over (in PPM) were $965{\pm}173\;K$, $1084{\pm}154\;K$, $1242{\pm}186\;K$, $1359{\pm}170\;K$, $1405{\pm}184\;K$, $1640{\pm}376\;K$, $1,771{\pm}324\;K$, and $1,972{\pm}385\;K$, respectively and the correlations between the counts in PPM and the total counts of image obtained in the scan speed of 30 cm/min demonstrated strong correlation (r=.775, p<.01). Conclusions: In the case of PPM coefficient over 3.6 K, the image quality obtained in the scan speed of 30cm/min and after applying the Oncoflash was similar to that obtained in the scan speed of 15 cm/min. In the case of total counts over 1,000 K, it is expected to reduce scan time without any damage on the image quality. In the case of total counts under 1,000 K, however, the image quality were decreased even though the Oncoflash is applied, so it is recommended to perform the re-image in the scan speed of 15 cm/min.

  • PDF

A Study on the Change of Image Quality According to the Change of Tube Voltage in Computed Tomography Pediatric Chest Examination (전산화단층촬영 소아 흉부검사에서 관전압의 변화에 따른 화질변화에 관한 연구)

  • Kim, Gu;Kim, Gyeong Rip;Sung, Soon Ki;Kwak, Jong Hyeok
    • Journal of the Korean Society of Radiology
    • /
    • 제13권4호
    • /
    • pp.503-508
    • /
    • 2019
  • In short a binary value according to a change in the tube voltage by using one of VOLUME AXIAL MODE of scanning techniques of chest CT image quality evaluation in order to obtain high image and to present the appropriate tube voltage. CT instruments were GE Revolution (GE Healthcare, Wisconsin USA) model and Phantom used Pediatric Whole Body Phantom PBU-70. The test method was examined in Volume Axial mode using the pediatric protocol used in the Y university hospital of mass-produced material. The tube voltage was set to 70kvp, 80kvp, 100kvp, and mAs was set to smart mA-ODM. The mean SNR difference of the heart was $-4.53{\pm}0.26$ at 70 kvp, $-3.34{\pm}0.18$ at 80 kvp, $-1.87{\pm}0.15$ at 100 kvp, and SNR at 70 kvp was about -2.66 higher than 100 kvp and statistically significant (p<0.05) In the Lung SNR mean difference analysis, $-78.20{\pm}4.16$ at 70 kvp, $-79.10{\pm}4.39$ at 80 kvp, $-77.43{\pm}4.72$ at 100 kvp, and SNR at 70 kvp at about -0.77 higher than 100 kvp were statistically significant. (p<0.05). Lung CNR mean difference was $73.67{\pm}3.95$ at 70 kvp, $75.76{\pm}4.25$ at 80 kvp, $75.57{\pm}4.62$ at 100 kvp and 20.9 CNR at 80 kvp higher than 70 kvp and statistically significant (p<0.05) At 100 kvp of tube voltage, the SNR was close to 1 while maintaining the quality of the heart image when 70 kvp and 80 kvp were compared. However, there is no difference in SNR between 70 kvp and 80 kvp, and 70 kvp can be used to reduce the radiation dose. On the other and, CNR showed an approximate value of 1 at 70 kvp. There is no difference between 80 kvp and 100 kvp. Therefore, 80 kvp can reduce the radiation dose by pediatric chest CT. In addition, it is possible to perform a scan with a short scan time of 0.3 seconds in the volume axial mode test, which is useful for pediatric patients who need to move or relax.

Contrast Optimization using of Weight-based Injection Protocol in Pediatric Abdomen CT Examination (소아 복부 CT 검사에서 체중에 기반한 조영제 주입 프로토콜 적용에 따른 조영증강의 최적화)

  • Kim, Yung-Kyoon;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • 제15권5호
    • /
    • pp.575-584
    • /
    • 2021
  • The aim of this study was to achieve optimal portal phase while reducing contrast medium by applying weight-based dose protocol compared to standard fixed dose protocol to performing of pediatric abdominal CT examination. Discovery 750HD (General Electric Medical Systems, Milwaukee, USA) was used, and a total of 167 children consisting of 85 men and 82 women under the age of 18 were studied. The group in which the 300 mgI/ml(Xenetix, Guerbet, France) contrast medium was fixedly injected at twice body weight and the group injected with physiological saline while gradually decreasing the injection amount by 10% while applying the weight-based protocol were distinguished. Also, the CT number and SNR of abdominal organs were compared and evaluated while changing the scan delay time. Subjective image quality of enhancement and beam-hardening artifacts of around the heart was assessed with five-point criterion. The group adapted weight-based protocol with 20% reduction in contrast medium was most similar in contrast enhancement in the group with fixed injection at twice body weight. Furthermore, the group with a delay time of 20% had the highest contrast enhancement effect, and the difference in CT attenuation coefficient from the group scanned immediately after injection of the contrast media. Therefore, the appropriate delay time after injection of the contrast agent increased the contrast enhancement of the parenchymal organ. In addition, the weight-based injection protocol with normal saline reduced artifacts around the heart, and the effect of contrast enhancement could be maintained. In conclusion, it is possible to reduce dosage of contrast media through the application of weight-based injection protocols and appropriate latency, and to characterize optimal portal phase imaging on pediatric abdominal CT.

Real-Time Video Quality Assessment of Video Communication Systems (비디오 통신 시스템의 실시간 비디오 품질 측정 방법)

  • Kim, Byoung-Yong;Lee, Seon-Oh;Jung, Kwang-Su;Sim, Dong-Gyu;Lee, Soo-Youn
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제46권3호
    • /
    • pp.75-88
    • /
    • 2009
  • This paper presents a video quality assessment method based on quality degradation factors of real-time multimedia streaming services. The video quality degradation is caused by video source compression and network states. In this paper, we propose a blocky metric on an image domain to measure quality degradation by video compression. In this paper, the proposed boundary strength index for the blocky metric is defined by ratio of the variation of two pixel values adjacent to $8{\times}8$ block boundary and the average variation at several pixels adjacent to the two boundary pixels. On the other hand, unnatural image movement caused by network performance deterioration such as jitter and delay factors can be observed. In this paper, a temporal-Jerkiness measurement method is proposed by computing statistics of luminance differences between consecutive frames and play-time intervals between frames. The proposed final Perceptual Video Quality Metric (PVQM) is proposed by consolidating both blocking strength and temporal-jerkiness. To evaluate performance of the proposed algorithm, the accuracy of the proposed algorithm is compared with Difference of Mean Opinion Score (DMOS) based on human visual system.

A Study of Image Quality Improvement Through Changes in Posture and Kernel Value in Neck CT Scanning (경부 CT검사 시 Kernel 값과 검사자세 변화를 통한 화질개선에 관한 연구)

  • Kim, Hyeon-Ju;Chung, Woo-Jun;Cho, Jae-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • 제5권2호
    • /
    • pp.59-66
    • /
    • 2011
  • There is a difficulty because of classifying the anatomical structure in the neck CT scan by the beam hardening artifact no more than disease and it including the 6, 7 number cervical spine and intervertebral disk. In case of enforcing the neck CT scan cause of the inner diameter of beam artifact tried to be inquired by the image evaluation according to the change of the image evaluation according to the direction of the shoulder joint applying the variation method of a posture and location and Kernel value and it was most appropriate, the lion tax and Kernel value try to be searched for through an experiment. Somatom Sensation 16 (Siemens, Enlarge, Germany) equipment was used in a patient 30 people coming to the hospital for the neck CT scan. A workstation used the AW 4.4 version (GE, USA). According to a direction and location of the shoulder joint, the patient posture gave a change to the direction of the shoulder joint as the group S it gave a change as three postures and placed the both arms comfortably and helps a group N and augmented unipolar left in the wealthy merchant and group P it memorized the both hands and ordered the eversion and drops below to the utmost and enforced a scan. By using a reconstructing method as the second opinion, it gave and reconstructed the Kernel value a change based on scan data with B 10 (very smooth), B 20 (smooth), B 30 (medium smooth), B 40 (medium), B 50 (medium sharp), B 60 (sharp), and B 70 (very sharp). By using image data which gave the change of the examination posture and change of the Kernel value and are obtained, we analyzed through the noise value measurement and image evaluation of. The outside wire eversion orders the both hands and the examination posture is cost in the neck CT scan with the group P it drops below to the utmost. And in case of when reconstructing with B 40 (medium) or B 50 (medium sharp) being most analyzed into the inappropriate posture and Kernel value and applying the Kernel value to a clinical, it is considered to be very useful.

The study of MDCT of Radiation dose in the department of Radiology of general hospitals in the local area (일 지역 종합병원 영상의학과 MDCT선량에 대한 연구)

  • Shin, Jung-Sub
    • Journal of the Korean Society of Radiology
    • /
    • 제6권4호
    • /
    • pp.281-290
    • /
    • 2012
  • The difference of radiation dose of MDCT due to different protocols between hospitals was analyzed by CTDI, DLP, the number of Slice and the number of DLP/Slice in 30 cases of the head, the abdomen and the chest that have 10 cases each from MDCT examination of the department of diagnostic imaging of three general hospitals in Gyeongsangbuk-do. The difference of image quality, CTDI, DLP, radiation dose in the eye and radiation dose in thyroid was analyzed after both helical scan and normal scan for head CT were performed because a protocol of head CT is relatively simple and head CT is the most frequent case. Head CT was significantly higher in two-thirds of hospitals compared to A hospital that does not exceed a CTDI diagnostic reference level (IAEA 50mGy, Korea 60mGy) (p<0.001). DLP was higher in one-third of hospitals than a diagnostic reference level of IAEA 1,050mGy.cm and Korea 1,000mGy.cm and two-thirds exceeded the recommendation of Korea and those were significantly higher than A hospital that does not exceed a diagnostic reference level (p<0.001). Abdomen CT showed 119mGy that was higher than a diagnostic reference level of IAEA 25mGy and Korea 20mGy in one-third. DLP in all hospitals was higher that Korea recommendation of 700mGy.cm. Among target hospitals, C hospital showed high radiation dose in all tests because MPR and 3D were of great importance due to low pitch and high Tube Curren. To analyze the difference of radiation dose by scan methods, normal scan and helical scan for head CT of the same patient were performed. In the result, CTDI and DLP of helical CT were higher 63.4% and 93.7% than normal scan (p<0.05, p<0.01). However, normal scan of radiation dose in thyroid was higher 87.26% (p<0.01). Beam of helical CT looked like a bell in the deep part and the marginal part so thyroid was exposed with low radiation dose deviated from central beam. In addition, helical scan used Gantry angle perpendicularly and normal scan used it parallel to the orbitomeatal line. Therefore, radiation dose in thyroid decreased in helical scan. However, a protocol in this study showed higher radiation dose than diagnostic reference level of KFDA. To obey the recommendation of KFDA, low Tube Curren and high pitch were demanded. In this study, the difference of image quality between normal scan and helical scan was not significant. Therefore, a standardized protocol of normal scan was generally used and protective gear for thyroid was needed except a special case. We studied a part of CT cases in the local area. Therefore, the result could not represent the entire cases. However, we confirmed that patient's radiation dose in some cases exceeded the recommendation and the deviation between hospitals was observed. To improve this issue, doctors of diagnostic imaging or technologists of radiology should perform CT by the optimized protocol to decrease a level of CT radiation and also reveal radiation dose for the right to know of patients. However, they had little understanding of the situation. Therefore, the effort of relevant agencies with education program for CT radiation dose, release of radiation dose from CT examination and addition of radiation dose control and open CT contents into evaluation for hospital services and certification, and also the effort of health professionals with the best protocol to realize optimized CT examination.

Film Line Scratch Detection using a Neural Network based Texture Classifier (신경망 기반의 텍스처 분류기를 이용한 스크래치 검출)

  • Kim, Kyung-Tai;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • 제43권6호
    • /
    • pp.26-33
    • /
    • 2006
  • Film restoration is to detect the location and extent of defected regions from a given movie film, and if present, to reconstruct the lost information of each region. It has gained increasing attention by many researchers, to support multimedia service of high quality. In general, an old film is degraded by dust, scratch, flick, and so on. Among these, the most frequent degradation is the scratch. So far techniques for the scratch restoration have been developed, but they have limited applicability when dealing with all kinds of scratches. To fully support the automatic scratch restoration, the system should be developed that can detect all kinds of scratches from a given frame of old films. This paper presents a neurual network (NN)-based texture classifier that automatically detect all kinds of scratches from frames in old films. To facilitate the detection of various scratch sizes, we use a pyramid of images generated from original frames by having the resolution at three levels. The image at each level is scanned by the NN-based classifier, which divides the input image into scratch regions and non-scratch regions. Then, to reduce the computational cost, the NN-based classifier is only applied to the edge pixels. To assess the validity of the proposed method, the experiments have been performed on old films and animations with all kinds of scratches, then the results show the effectiveness of the proposed method.

Portable Projection-Based Display System (휴대형 프로젝션 기반의 디스플레이 시스템)

  • Oh, Ji-Hyun;Lee, Moon-Hyun;Park, Han-Noon;Kim, Jae-Soo;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • 제12권2호
    • /
    • pp.137-147
    • /
    • 2007
  • Projection-based augmented reality (AR) system refers to the system that accurately project high quality virtual information at the user-specified area by using the projector. Most of projection-based AR systems use the display device to support high quality and wide screen for increasing the user-immersion. Furthermore, they are implemented on the desktop environment due to the computational complexity. However, these projection-based AR systems are not suited as a mobile system and thus it may be inconvenient in the user point of view. Fortunately, Miniaturization of projectors and improved capacity of the mobile processor allowed the mobile AR system to be convenient. The limitation of established mobile AR system is that it uses small display screen which does not support high-resolutions and thus it may reduce the user-immersion into the system. In this paper, we propose portable projection-based display system, which overcomes the limitations of both projection-based and mobile-based AR systems. We have conducted the user evaluation to verify the effectiveness and the utmost capacity of the system.

Feasibility Study of Applying the Acrylic Assistant Equipment (ACR) to Reduce Patient's Discomfort in Lower Abdomen MRI Scan (하복부 MRI 검사 시 환자의 불편함을 줄이기 위한 아크릴 보조 장치 사용의 타당성 조사)

  • Park, Eunhye;Lee, Minsik
    • Journal of the Korean Society of Radiology
    • /
    • 제12권4호
    • /
    • pp.475-480
    • /
    • 2018
  • In lower abdominal MRI scan, patients have been tested by physically contacting with the body array coil. In this study, we have designed the acrylic assistant equipment (ACR) which allows the contactless scan of the patient to the coil and evaluated the feasibility by comparing the acquired images with ACR to those obtained without ACR. We tested 10 cases (F: 5, m: 5) by using the Ingenia $3.0T^{TM}$ MR system and dStreamTM torso coil (Philips Healthcare, Netherlands). We implemented T1 AX TSE and eTHRIVE (GRE) techniques. The scanned images were quantitatively and qualitatively assessed. In qualitatively, the TSE shows 4.44 and 4.56 mean values with and without the ACR and 4.34 and 4.28 at the GRE, respectively. In quantitatively, the TSE shows 12.15 CNR, 17.95 SNR and 12.71 CNR, 18.96 SNR with and without the ACR. And GRE shows 17.72 CNR, 22.59 SNR and 18.26 CNR, 24.47 SNR with and without the ACR, respectively. We have designed and implemented the acrylic assistant equipment to lower abdominal patients. Our data indicate that it is possible to obtain similar image qualities to current lower abdominal MRI scan without the physical contact to the patient.