• Title/Summary/Keyword: 영상화질평가

Search Result 481, Processing Time 0.025 seconds

A Study of Various Filter Setups with FBP Reconstruction for Digital Breast Tomosynthesis (디지털 유방단층영상합성법의 FBP 알고리즘 적용을 위한 다양한 필터 조합에 대한 연구)

  • Lee, Haeng-Hwa;Kim, Ye-Seul;Lee, Youngjin;Choi, Sunghoon;Lee, Seungwan;Park, Hye-Suk;Kim, Hee-Joung;Choi, Jae-Gu;Choi, Young-Wook
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.271-280
    • /
    • 2014
  • Recently, digital breast tomosynthesis (DBT) has been investigated to overcome the limitation of conventional mammography for overlapping anatomical structures and high patient dose with cone-beam computed tomography (CBCT). However incomplete sampling due to limited angle leads to interference on the neighboring slices. Many studies have investigated to reduce artifacts such as interference. Moreover, appropriate filters for tomosynthesis have been researched to solve artifacts resulted from incomplete sampling. The primary purpose of this study is finding appropriate filter scheme with FBP reconstruction for DBT system to reduce artifacts. In this study, we investigated characteristics of various filter schemes with simulation and prototype digital breast tomosynthesis under same acquisition parameters and conditions. We evaluated artifacts and noise with profiles and COV (coefficinet of variation) to study characteristic of filter. As a result, the noise with parameter 0.25 of Spectral filter reduced by 10% in comparison to that with only Ramp-lak filter. Because unbalance of information reduced with decreasing B of Slice thickness filter, artifacts caused by incomplete sampling reduced. In conclusion, we confirmed basic characteristics of filter operations and improvement of image quality by appropriate filter scheme. The results of this study can be utilized as base in research and development of DBT system by providing information that is about noise and artifacts depend on various filter schemes.

Research of Protocols for Optimization of Exposure Dose in Abdominopelvic CT - (복부-골반 CT검사 시 피폭선량 최적화에 관한 프로토콜 연구)

  • Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.245-251
    • /
    • 2017
  • This study measured the exposure dose during abdominal-pelvic CT exam which occupies 70% of CT exam and tried to propose a protocol for optimized exposure dose in abdomen and pelvis without affecting the imagery interpretation. The study scanned abdomen-pelvis using the current clinical scan method, the 120 kVp, auto exposure control(AEC), as 1 phase. As for the newly proposed 2 phase scan method, the study divided into 1 phase abdomen exam and 2 phase pelvis exam and each conducted tube voltage 120 kVp, AEC for abdomen exam, and fixed tube current method in 120 kVp, 100, 150, 200, 250, 300, 350, 400 mA for pelvis exam. The exposure dose value was compared using $CTDI_{VOL}$, DLP value measured during scan, and average value of CT attenuation coefficient, noise, SNR from each scan image were obtained to evaluate the image. As for the result, scanning of 2 phase showed significant difference compared to 1 phase. In $CTDI_{VOL}$ value, the 2 phase showed 26% decrease in abdomen, 1.8~59.5% decrease in pelvis for 100~250 mA, 12.7%~30% increase in pelvis for 300~400 mA. Also, DLP value showed 53% decrease in abdomen and 41~81% decrease in pelvis when scanned by 2 phase compared to 1 phase, but it was not statistically significant. As for the SNR, when scanning 2 phase close to heart, scanning 1 phase close to pelvis, scanning and scanning 1 phase at upper and lower abdomen, it was higher when scanning 2 phase for 200~250 mA. Also, the CT number and noise was overall similar, but the noise was high close to pelvis. However, when scanning 2 phase for 250 mA close to pelvis, the noise value came out similar to 1 phase, and did not show statistically significant difference. It seems when separating pelvis to scan in 250 mA rather than 400 mA in 1 phase as before, it is expected to have reduced effect of exposure dose without difference in the quality of image. Thus, for patients who often get abdominal-pelvic CT exam, fertile women or children, this study proposes 2 phase exam for smaller exposure dose with same image quality.

Image Contrast and Sunlight Readability Enhancement for Small-sized Mobile Display (소형 모바일 디스플레이의 영상 컨트라스트 및 야외시인성 개선 기법)

  • Chung, Jin-Young;Hossen, Monir;Choi, Woo-Young;Kim, Ki-Doo
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.116-124
    • /
    • 2009
  • Recently the CPU performance of modem chipsets or multimedia processors of mobile phone is as high as notebook PC. That is why mobile phone has been emerged as a leading ICON on the convergence of consumer electronics. The various applications of mobile phone such as DMB, digital camera, video telephony and internet full browsing are servicing to consumers. To meet all the demands the image quality has been increasingly important. Mobile phone is a portable device which is widely using in both the indoor and outside environments, so it is needed to be overcome to deteriorate image quality depending on environmental light source. Furthermore touch window is popular on the mobile display panel and it makes contrast loss because of low transmittance of ITO film. This paper presents the image enhancement algorithm to be embedded on image enhancement SoC. In contrast enhancement, we propose Clipped histogram stretching method to make it adaptive with the input images, while S-shape curve and gain/offset method for the static application And CIELCh color space is used to sunlight readability enhancement by controlling the lightness and chroma components which is depended on the sensing value of light sensor. Finally the performance of proposed algorithm is evaluated by using histogram, RGB pixel distribution, entropy and dynamic range of resultant images. We expect that the proposed algorithm is suitable for image enhancement of embedded SoC system which is applicable for the small-sized mobile display.

  • PDF

Research for The Environmental Optimization of Dose and Image quality in Digital Radiography (디지털 방사선촬영 환경에서 선량의 최적화 및 영상품질에 대한 연구)

  • Lee, Kwang Jae;Kim, MinGi;Lee, Jong Woong;Kim, Ho Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.203-209
    • /
    • 2013
  • Digital Radiography (DR) has improved a quality of resolution based on a wide dynamic range, high detective quantum efficiency (DQE), and modulation transfer function (MTF), compared with film/screen(F/s). Unlike expectation that a low level of radiation can be used in examination, high level of signal to noise ratio(SNR) due to over-exposure caused increase of exposed dose to patients. Also, the auto exposure control (AEC) using Kilovolage(kVp) in F/S can cause over-exposure. Hence, in this study, we proposed a proper method for using DR, in which effect of tubing Kilovolage on device's image, DR MTF measurement with changes of tubing current (mA), and the quantitative evaluation of skull phantom captured images' PSNR were evaluated. Changes of contrast with tubing Kilovolage can be improved by retouching, and MTF changes according to tubing current(1.41~1.39 lp/mm in 50% area, and 3.19~2.8 lp/mm in 10% area) does not influence on resolution of image. As a result, high tubing Kilovoltage, and tubing current will be suitable to use of DR.

Comparative Evaluation of Images after Applying Quantum Denoising System Algorithm to Brain Computed Tomography (뇌 컴퓨터단층검사 시 양자잡음제거 알고리즘을 적용한 영상의 비교평가)

  • Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.589-594
    • /
    • 2017
  • The objective of this study was to evaluate the enhancement effects of the quantum denoising system (QDS) on brain CT images. This retrospective study was conducted with 45 adults who visited G Radiology located in Gyungbuk for having brain CT tests between Jul 2017 and Oct 2017 after receiving consents. Subjects were divided into a control group (A group; no QDS(-) application during the brain CT test) and a treatment group (B Group; QDS(+) application during the brain CT test). The following conclusions were obtained from the study. The noise values at the Pons part and the Vermis part were significantly (p<0.05) lower in B Group ($Pons=5.41{\pm}1.05HU$; $Vermis=5.28{\pm}0.73HU$) than A Group ($Pons=6.92{\pm}0.98HU$; Vermis=6.72). The SNR values at the Pons part and the Vermis part were significantly (p<0.05) higher in B Group ($Pons=7.28{\pm}2.56$; $Vermis=8.63{\pm}3.04$) than A Group ($Pons=5.21{\pm}1.28$; $Vermis=6.23{\pm}1.49$). In conclusion, the results of this study suggested that the application of QDS to the brain CT test would enhance the signal to noise ratio (SNR) and the contrast to noise ratio (CNR) to provide an image more appropriate for diagnosis.

Quality Assessment for Elbow CT scan by positioning and respiratory control (팔꿈치관절 CT검사에서 환자 자세 및 호흡에 따른 화질평가)

  • Lim, Jong-Chun;Park, Sang-Hyun;Lee, In-Jae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.110-114
    • /
    • 2017
  • Because the arm can't be sutured due to fracture during a elbow CT scan, a CT scan is proceeded in a state of abdomen and L-spire are overlapped which beam hardening artifact is done many times, and it often lowers the quality of elbow CT images. So there are many difficulties in reading and due to increase in radiation dose from it, the number of patient's exposure keeps increasing. In this research, it plans to improve the quality of the images by avoiding overlap with abdomen, and increasing the number of photon overlapped with lung field which the line attenuation is relatively small. The way of experiment is based on patient's right elbow and place him as head first position, then place his elbow at L2-3 level in supine position, turn about 30 degrees to the left in non-control breathing and in supine position, and compared with full inspiration after overlapping with lung. After figuring out the average value and standard deviation data using Image J program 5 times each for 16, 128 channels, the evaluation is proceeded by measuring each of CNR, MSR are statistically analyzed using SPSS program. Therefore, through positioning and inspiration during elbow CT scan, the way of inspection minimized the exposure radiation dose, and seems to be meaningful in a way to improve the quality of the images.

Evaluation of Dose and Image Quality of Lens according to Baseline during Brain CT Scan (두부 전산화단층촬영 시 기준선에 따른 수정체 선량과 화질 평가)

  • Kim, Kyu-Hyung;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.699-704
    • /
    • 2019
  • It is important to minimize the exposure dose during an examination and obtain good quality images at the same time. This study compared the beam harding effect according to the baseline superior orbito meatal line(SOML), orbito meatal line(OML), inferior orbito metal line(OML) and measured the exposure dose of the lens, especially in brain CT examinations, which generally apply to head diease patients. The beam harding effect assessment of each image along the baseline was performed quantitatively using the Image J program, and the exposure dose of the lens was detected by OSLDs and compared. As a result, As a result, when the SOML was used as the reference line, the dose of the lens was decreased by 85.08% at 80 kV and by 79.7% at 80 kV, compared to when IOML was used as the baseline. If the gantry angle at brain CT was parallel scan to SOML, there were no significant differences in the exposure to the lens and between the OML and IOML. Therefore, this study has shown that it is efficient to have a parallel scan on SOML as a protocol during Brain CT examinations.

Comparison of Thyroid Doses for Shielding Material Changes in Neck Computed Tomography (Neck CT에서 차폐체 재료 변화에 따른 Thyroid 선량 비교 연구)

  • Kang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2019
  • With regard to current Neck CT, Bismuth shielding boards are often being used to reduce exposure to superficial organs such as the thyroid. However, beam hardening often occurs near superficial organs with Bismuth shielding boards and variations in CT Number, Noise, and Uniformity values occur severely. This study looked into the usefulness of shielding boards made from aluminum and silicone that can be easily obtained and have good machinability by comparing them to the existing Bismuth shielding board. An Aluminum 7.3mm and a Silicone 21.5mm were made with shielding ratios similar to that of the Bismuth(0.06 mmPb). TLD (TLD-100) was placed on the thyroid area of the Phantom (RS-108T) and 5 doses were measured for each. To compare image quality, CT Number and Noise variations in axial images of the thyroid area in Neck CT images were compared. Also, variations in CT Number, Noise, and Uniformity were measured in the AAPM phantom images and compared. In the results, when thyroid doses for each shielding board were compared, the Bismuth shielding board showed a 14% reduction, the Silicone 21.5mm showed a 15% reduction, and the Aluminum 7.3mm showed a 13% reduction compared to the Non-Shield. Statistically, there were no significant differences in comparison with the Bismuth shielding board. In CT Number variations of thyroid area images, variations were largest for the Bismuth shielding board. With Uniformity evaluations of the AAPM phantom, the Bismuth shielding board was found unsuitable and the Aluminum 7.3mm and Silicone 21.5mm satisfied the acceptance criteria. Research results show that the Aluminum 7.3mm and Silicone 21.5mm have a similar shielding ratio to the high-priced Bismuth shielding board that is currently being used clinically and in comparison tests of CT Number attenuation coefficient variations, Noise, and Uniformity which are phantom image evaluation items, they proved to be better than Bismuth shielding boards. If various shielding boards are made using aluminum and silicone, sized appropriately for superficial organs, it would be useful in decreasing patient doses.

Implementation and Evaluation of Optimal Dose Control for Portable Detectors with SiPM (SiPM을 통한 휴대용 검출기의 최적 선량 제어에 대한 구현 및 평가)

  • Byung-Wuk Kang;Sun-Kook Yoo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1139-1147
    • /
    • 2023
  • The purpose of this paper is to present and evaluate the performance of a method for controlling the dose for optimal image acquisition while minimizing patient exposure by applying a small-sized Photomultiplier(SiPM) sensor inside a portable detector. Portable detectors have the advantage of being able to quickly access the patient's location for rapid diagnosis, but this mobility comes with the challenge of dose control. This paper presents a method to identify the dose that can have the DQE and optimal image quality of the detector through image evaluation based on IEC62220-1-1, an international standard for X-ray imaging devices, and to identify the optimal dose by matching the ADU of the image and the output of the SiPM Sensor. The Skull AP image was acquired by implementing the detector manufacturer's reference dose. The optimal dose was 342.8 µGy, and the optimal controlled dose was 148.3 µGy, which is 57 % of the manufacturer's reference dose. The Chest AP image was 81.9 µGy and the optimal controlled dose was 27.9 µGy, which is a high dose reduction effect of 66 %. In addition, the two images were analyzed by five radiologists and found to have no clinically significant difference in anatomical delineation.

A STUDY ON THE OPTIMAL ILLUMINATION POWER OF DIFOTI (DIFOTI 영상 최적화를 위한 광량에 대한 연구)

  • Kim, Jong-Bin;Kim, Jong-Soo;Yoo, Seung-Hoon;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • This study was performed to compare the quality of image processing between the newly developed prototype using light emitting diode(LED) and the conventional $DIFOTI^{TM}$ system(EOS Inc., USA). To estimate the optimal light emitting power for the improved images, primary enamel surfaces treated under Carbopol 907 de-mineralizing solution were taken daily during 20 days of experimental periods by both DIFOTI systems. The results of comparative analyses on the images obtained from both systems with polarized image as gold standard can be summarized as follows: 1. Trans-illumination indices of images taken from primary enamel surfaces were decreased with time in both systems. 2. The differences of intensity of luminance between sound and de-mineralized enamel surface in prototype DIFOTI system was shown to be relatively smaller than conventional $DIFOTI^{TM}$ system. 3. From the comparative analysis of images from both DIFOTI system with polarized images as gold standard, the difference between sound and de-mineralized enamel surface of intensity of luminance of $DIFOTI^{TM}$ system was more correlated to polarized images than prototype of DIFOTI system. With the optimal LED emitting power, the control of aperture of digital camera is considered as the another key factor to improve the DIFOTI images. For the best image quality and analysis, the development of the improved image processing software is required.