• Title/Summary/Keyword: 영상촬영기하

Search Result 181, Processing Time 0.029 seconds

Feasibility Study on Producing 1:25,000 Digital Map Using KOMPSAT-5 SAR Stereo Images (KOMPSAT-5 레이더 위성 스테레오 영상을 이용한 1:25,000 수치지형도제작 가능성 연구)

  • Lee, Yong-Suk;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1329-1350
    • /
    • 2018
  • There have been many applications to observe Earth using synthetic aperture radar (SAR) since it could acquire Earth observation data without reference to weathers or local times. However researches about digital map generation using SAR have hardly been performed due to complex raw data processing. In this study, we suggested feasibility of producing digital map using SAR stereo images. We collected two sets, which include an ascending and a descending orbit acquisitions respectively, of KOMPSAT-5 stereo dataset. In order to suggest the feasibility of digital map generation from SAR stereo images, we performed 1) rational polynomial coefficient transformation from radar geometry, 2) digital resititution using KOMPSAT-5 stereo images, and 3) validation using digital-map-derived reference points and check points. As the results of two models, root mean squared errors of XY and Z direction were less than 1m for each model. We discussed that KOMPSAT-5 stereo image could generated 1:25,000 digital map which meets a standard of the digital map. The proposed results would contribute to generate and update digital maps for inaccessible areas and wherever weather conditions are unstable such as North Korea or Polar region.

Feature-Based Light and Shadow Estimation for Video Compositing and Editing (동영상 합성 및 편집을 위한 특징점 기반 조명 및 그림자 추정)

  • Hwang, Gyu-Hyun;Park, Sang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Video-based modeling / rendering developed to produce photo-realistic video contents have been one of the important research topics in computer graphics and computer visions. To smoothly combine original input video clips and 3D graphic models, geometrical information of light sources and cameras used to capture a scene in the real world is essentially required. In this paper, we present a simple technique to estimate the position and orientation of an optimal light source from the topology of objects and the silhouettes of shadows appeared in the original video clips. The technique supports functions to generate well matched shadows as well as to render the inserted models by applying the estimated light sources. Shadows are known as an important visual cue that empirically indicates the relative location of objects in the 3D space. Thus our method can enhance realism in the final composed videos through the proposed shadow generation and rendering algorithms in real-time.

Detection and Blocking of a Face Area Using a Tracking Facility in Color Images (컬러 영상에서 추적 기능을 활용한 얼굴 영역 검출 및 차단)

  • Jang, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.454-460
    • /
    • 2020
  • In recent years, the rapid increases in video distribution and viewing over the Internet have increased the risk of personal information exposure. In this paper, a method is proposed to robustly identify areas in images where a person's privacy is compromised and simultaneously blocking the object area by blurring it while rapidly tracking it using a prediction algorithm. With this method, the target object area is accurately identified using artificial neural network-based learning. The detected object area is then tracked using a location prediction algorithm and is continuously blocked by blurring it. Experimental results show that the proposed method effectively blocks private areas in images by blurring them, while at the same time tracking the target objects about 2.5% more accurately than another existing method. The proposed blocking method is expected to be useful in many applications, such as protection of personal information, video security, object tracking, etc.

Multiple TIP Images Blending for Wide Virtual Environment (넓은 가상환경 구축을 위한 다수의 TIP (Tour into the Picture) 영상 합성)

  • Roh, Chang-Hyun;Lee, Wan-Bok;Ryu, Dae-Hyun;Kang, Jung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.1
    • /
    • pp.61-68
    • /
    • 2005
  • Image-based rendering is an approach to generate realistic images in real-time without modeling explicit 3D geometry. Especially, owing to its simplicity, TIP(Tour Into the Picture) is preferred to constructing a 3D background scene. Because existing TIP methods have a limitation in that they lack geometrical information, we can not expect a accurate scene if the viewpoint is far from the origin of the TIP. In this paper, we propose the method of constructing a virtual environment of a wide area by blending multiple TIP images. Firstly, we construct multiple TIP models of the virtual environment. Then we interpolate foreground and background objects respectively, to generate a smooth navigation image. The method proposed here can be applied to various industry applications, such as computer game, 3D car navigation, and so on.

The Method for Estimating Stereoscopic Object Position with Horizontal-Moving Camera (수평이동방식 입체카메라의 입체영상의 결상 위치 추정 방법)

  • Lim, Young-Tae;Kim, Nam;Kwon, Ki-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.532-536
    • /
    • 2006
  • The position of stereoscopic objects is an important parameter to induce three-dimensional effects such as convergence control and image distortions. There are three kinds of stereoscopic cameras : Parallel, Toed-in, and Horizontal-Moving cameras. In this paper we proposed the method for estimating stereoscopic object position with a horizontal-moving camera. In the previous methods, viewing angle ratios are used to estimate the object positions. Our method based on the horizontal movements of the camera to estimate the positions. Using geometrical models of shooting and display we experimented with two methods. Results of experiments showed the distance of stereoscopic objects on virtual screen related to horizontal movement.

Improved depth evaluation using Epipolar geometry (Epipolar geometry를 활용한 개선된 depth 평가 방법)

  • Seong-Min Kim;Jong-Ki Han
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.99-102
    • /
    • 2022
  • 실재하는 물체나 장소를 디지털 카메라나 휴대폰 카메라로 여러 장 촬영하여 얻은 2차원 이미지 데이터셋으로부터 3차원 영상을 얻기 위해서 이미지를 이루는 각 pixel의 depth 정보를 얻는 것은 필수적인 과정이다. 주어진 이미지에서 depth 정보를 얻기 위해 Shuhan Shen은 PatchMatch 알고리즘을 활용하는 것을 제안하였다. 그 이후 PatchMatch 기반의 알고리즘은 널리 사용되며 우수한 성능을 보이고 있다. PatchMatch 기반의 알고리즘을 사용해 depth를 추정하는 과정에서 depth와 법선 벡터를 Zero-mean Normalized Cross Correlation(ZNCC)를 사용해 평가한다. 하지만, ZNCC는 depth를 평가하려는 pixel의 주변 pixel들의 밝기 값 혹은 색상 값의 분포를 사용하기 때문에 밝기 값이나 색상 값의 변화가 적은 texture-less region에서는 신뢰성이 떨어진다. 본 논문에서는 이 문제를 epipolar geometry를 활용한 기하학적 정보를 이용하여 개선하고자 한다.

  • PDF

3D Accuracy Analysis of Mobile Phone-based Stereo Images (모바일폰 기반 스테레오 영상에서 산출된 3차원 정보의 정확도 분석)

  • Ahn, Heeran;Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.677-686
    • /
    • 2014
  • This paper analyzes the 3D accuracy of stereo images captured from a mobile phone. For 3D accuracy evaluation, we have compared the accuracy result according to the amount of the convergence angle. In order to calculate the 3D model space coordinate of control points, we perform inner orientation, distortion correction and image geometry estimation. And the quantitative 3D accuracy was evaluated by transforming the 3D model space coordinate into the 3D object space coordinate. The result showed that relatively precise 3D information is generated in more than $17^{\circ}$ convergence angle. Consequently, it is necessary to set up stereo model structure consisting adequate convergence angle as an measurement distance and a baseline distance for accurate 3D information generation. It is expected that the result would be used to stereoscopic 3D contents and 3D reconstruction from images captured by a mobile phone camera.

Development of Mobile Active Transponder for KOMPSAT-5 SAR Image Calibration and Validation (다목적실용위성 5호의 SAR 영상 검·보정을 위한 이동형 능동 트랜스폰더 개발)

  • Park, Durk-Jong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1128-1139
    • /
    • 2013
  • KOMPSAT-5(KOrea Multi-Purpose SATellite-5) has a benefit of continuously conducting its mission in all weather and even night by loading SAR(Synthetic Aperture Radar) payload, which is different from optical sensor of KOMPSAT-2 satellite. During IOT(In-Orbit Test) periods, SAR image calibration should be conducted through ground target of which location and RCS is pre-determined. Differently from the conventional corner reflector, active transponder has a capability to change its internal transfer gain and delay, which allows active transponder to be shown in a pixel of SAR image with very high radiance and virtual location. In this paper, the development of active transponder is presented from design to I&T(Integration and Test).

Marker Recognition System for the User Interface of a Serious Case (중증환자 인터페이스를 위한 마커 인식 시스템)

  • So, In-Mi;Kang, Sun-Kyung;Kim, Young-Un;Jung, Sung-Tae
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.191-198
    • /
    • 2007
  • In this paper, we present a marker detection and recognition method from camera image for a disabled person to interact with a server system which can control appliance of surrounding environment. It converts the camera image to a binary image by using multi-threshold and extracts contours of objects in the binary image. After that, it approximates the contours to a list of line segments. It finds rectangular markers by using geometrical features which are extracted from the approximated line segments. It normalizes the shape of extracted markers into exact squares by using the warping technique. It extracts feature vectors from marker image by using principal component analysis and then recognizes the marker. The proposed marker recognition system is robust for light change by using multi-threshold. Also, it is robust for angular variation of camera by using warping technique and principal component analysis. Experimental results show that the proposed method achieves 100% recognition rate at maximum for 21 markers and execution speed of 12 frames/sec.

Segmentation of Computed Tomography using The Geometric Active Contour Model (기하학적 동적 외곽선 모델을 이용한 X-ray 단층촬영영상의 영상추출)

  • Jang, D.P.;Kim, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.541-545
    • /
    • 1997
  • This paper presents a modified geometric active contour model or edge detection and segmentation of computed tomography(CT) scan images. The method is based on the level setup approach developed by Osher and Sethian and the modeling of propagation fronts with curvature dependent speeds by Malladi. Based on above algorithms, the geometric active contour is obtained through a particular level set of hypersurface lowing along its gradient force and curvature force. This technique retains the attractive feature which is topological and geometric flexibility of the contour in recovering objects with complex shapes and unknown topologies. But there are limitations in this algorithm which are being not able to separate the object with weak difference from neighbor object. So we use speed limitation filter to overcome those problems. We apply a 2D model to various synthetic cases and the three cases of real CT scan images in order to segment objects with complicated shapes and topologies. From the results, the presented model confirms that it attracts very naturally and efficiently to the desired feature of CT scan images.

  • PDF