본 논문은 영상의 isophote정보를 constraint로 사용만 유전자 알고리즘 (Genetic Algorithms) 기반의 컬러 영상 복원방법을 제안한다. 제안만 방법은 오염된 관측 영상으로부터 원 영상으로 복원하기 위해. 영상 복원 문제인 illposed 문제를 유전자 알고리즘을 이용하여 비용함수(cost funcition)가 최소가 되도록 하는 최적화 문제로 모델링 한다. 본 논문에서 제안만 방법은 영상에서 같은 밝기 값을 가진 영역의 경계선을 나타내는 isophole 를 비용함수의 정칙화(regularization) 연산자로 사용하여 영상을 복원한다. 사용자가 복원할 영역을 지정만 후, 유전자 알고리즘을 사용하여 복원될 영역치 isophote 를 자연스럽게 유지하도록 복원한다. 제안한 방법은 디지털 비디오에서 상업적인 광고나, 자막 측은 로고등을 제거하는데 사용될 수 있으며, 실험 결과, 일반적으로 영상 복원에 많이 사용하는 Constraint 로 라플라시안(Laplaoian) 연산자보다 isophote를 정칙화 연산자로 사용함으로써 효율적으로 영상이 복원됨을 알 수 있다.
영상 복원은 다양한 영상 처리의 분야의 기반기술로 사용되는 기술로서, 복원 과정에서의 번짐현상(블러링)으로 인한 화질 저하가 발생하는 문제점이 있다. 위성 영상과 같이 영상이 의미하는 내용의 중요도가 높은 분야에서는 화질 저하를 최소화하는 영상 복원 기술이 요구된다. 따라서 본 논문에서는 하위 레벨 해상도 보간과 손실 정보 추정을 이용한 위성 영상 복원 방법을 제안한다. 제안하는 방법에서는 하위 레벨 해상도 보간을 통해서 복원 과정에서 발생하는 손실 정보를 추정하고, 추정한 손실 정보를 복원된 영상에 적용하여 최종적으로 영상 복원 결과를 향상시킨다. 동일한 위성 영상을 이용한 비교 실험에서 기존의 방법들보다 주관적 화질 개선이 뚜렷함을 알 수 있었고, 객관적 화질 비교인 PSNR에서도 $2.68\sim4.22dB$의 향상된 결과를 나타내었다. 제안하는 방법은 위성 영상 분석을 비롯하여 영상 복원을 이용하는 다양한 응용 환경에서 유용하게 사용될 수 있다.
초해상도 영상복원은 저해상도 영상을 이용하여 하나의 고해상도 영상을 획득하는 기법이다. 초해상도 영상복원은 크게 두 가지 방법으로 구현된다. 단일 영상을 이용한 초해상도 영상복원과, 여러 장의 저해상도 영상을 이용한 초해상도 영상복원 기법이 연구되고 있다. 여러 장의 저해상도 영상을 이용한 공간영역에서의 초해상도 영상복원 알고리즘은 크게 정합, 보간, 후처리 과정을 거치게 된다. 본 논문에서는 정합과정 이전에 입력영상보정을 통한 전처리과정을 수행하여 잡음으로 인한 부정확한 위치정보추정 확률을 감소시키고, 입력영상보정과정인 전처리과정으로 인해 후처리과정을 통한 영상복원 영상보다 향상된 영상을 획득하는 기법을 제안하며, 실험결과에서 기존의 방법보다 좋은 영상을 얻음을 확인하였다.
본 논문에서는 공간 영역의 제약 정보를 이용한 적응 영상 복원 방식을 제안한다. 공간 영역의 제약 정보로는 국부 정보의 평균, 분산 및 최대 값을 이용하였다. 반복 기법을 이용하여 매 반복 해에서 얻어진 복원 영상으로부터 상기 제약 정보를 설정하게 되고, 위의 제약 정보는 임의의 입력 값에 의해 정의되는 매개 변수와 더불어 복원 영상의 국부 완화 정도를 결정하게 된다. 제안된 방식을 이용하여 복원 영상을 얻기 위해 비적응 복원 방식보다 빠른 수렴 속도를 갖게 됨을 알 수 있었다. 또한, 국부적으로 제어된 완화 정도를 지닌 복원 영상을 얻을 수 있었다.
본 논문에서는 공간 영역의 제약 정보를 이용한 적응 영상 복원 방식을 제안한다. 공간 영역의 제약 정보로는 국부 정보의 평균, 분산 및 최대 값을 이용하였다 반복 기법을 이용하여 매 반복 해에서 얻어진 복원 영상으로부터 상기 제약 정보를 설정하게 되고, 위의 제약 정보는 임의의 입력 값에 의해 정의되는 매개 변수와 더불어 복원 영상의 국부 완화 정도를 결정하게 된다. 제안된 방식을 이용하여 복원 영상을 얻기 위해 비적응 복원 방식보다 빠른 수렴 속도를 갖게 됨을 알 수 있었다. 또한, 국부적으로 제어된 완화 정도를 지닌 복원 영상을 얻을 수 있었다.
신경 회로망에서 연상 메모리(Associative Memory)는 주어진 자료에 대해 정보를 저장하고 복원하는 알고리즘이다. 본 논문에서는 학습된 영상의 정확한 분류와 왜곡된 영상의 복원 및 분류를 위해 기존의 퍼지 연상 메모리 알고리즘을 개선하였다. 기존의 퍼지 연상 메모리는 학습 데이터와 학습 원본과 같은 입력에 대해 우수한 복원 성능을 보이나 학습 데이터의 수가 증가할수록 그리고 왜곡된 입력에 대해 정확히 출력할 수 없고 복원 성능도 저하된다. 따라서 본 논문에서는 기존의 퍼지 연상 메모리 알고리즘을 개선하여 왜곡된 입력에 대해서도 원본 학습 데이터를 정확히 출력하고 복원하는 개선된 퍼지 연상 메모리 알고리즘을 제안하였다.
고해상도 영상은 원격탐사, 의료영상 등 다양한 분야에서 사용되며, 향후에 많은 수요가 예상된다. 초해상도 영상복원은 동일한 지역을 촬영한 여러 장의 저해상도 영상을 이용하여 고해상도 영상으로 복원하는 소프트웨어적인 영상 해상도 향상 방법이며, 공간 영역과 주파수 영역의 초해상도 영상복원으로 구분된다. 본 연구에서는 공간 영역에서 확률적 접근법을 이용하여 CCD 영상의 초해상도 영상복원을 수행하였다.
기존의 영상 복원 방법에서는 영상에 퍼지 스트레칭 기법을 이용하여 명암 대비를 강조하였다. 강조된 영상에서 Max-Min 연산을 위해서 칼라 채널의 최대값을 이용하여 각 픽셀 값을 정규화 하였다. 정규화 된 픽셀 값에 Min 연산을 적용하여 연결 가중치를 계산하여 훼손된 영상의 복원에 적용하였다. 그러나 일부 손실된 영상에서 손실된 부분을 탐색하기 위해 $10{\times}10$을 가진 마스크를 이용하여 훼손된 영역을 탐색한 후, 탐색된 훼손된 영역에 연결 가중치를 적용하여 임계값보다 적은 경우에는 임계값으로 설정하여 손실된 부분을 복원하였으나 원 영상과의 차이가 나는 경우가 자주 발생하여 복원의 정확성이 낮아지는 문제점이 있다. 따라서 본 논문에서는 영상의 복원의 정확성을 높이기 위하여 그레이 영상뿐만 아니라 칼라 영상에서도 복원의 정확성을 높일 수 있는 방법을 제안한다. 제안된 방법을 다양한 칼라 영상을 대상으로 실험한 결과, 제안된 방법이 기존의 방법보다 복원의 정확성이 높아진 것을 확인할 수 있었다.
본 논문에서는 초음파 회절 토모그라피를 위한 FBP와 BFP 영상복원 알고리즘에 관한 분해능을 연구하였다. 고정좌표계를 사용한 수정된 FBP 영상복원 알고리즘과 평면구조물에 적합한 BFP 영상복원 알고리즘을 이용하여 복원할 수 있는 토모그라픽 영상에 대한 분해능을 분석할 수 있는 모호함수를 유도하고 모의실험을 통하여 얻은 측방향 및 축방향 분해능을 분석하였다. 분석결과, FBP 영상복원 알고리즘에 대한 측방향 및 축방향의 3dB분해능은 각각 0.27파장, 0.70파장을 얻었으며, 또한 BFP 영상복원 알고리즘에 대한 측방향 및 축방향 분해능도 각각 0.39파장과 0.98파장으로 정량적으로 결정하였다. 따라서 본 연구를 통하여 수정된 FBP 영상복원 알고리즘과 BFP 영상복원 알고리즘은 회절 토모그라피를 위한 영상복원에 유용하게 이용할 수 있음을 확인하였다.
디지털 영상 저장 과정에서 일어나는 문제점은 영상 저장부 센서계의 한계로 나타낼 수 있다. 센서계의 충분하지 못한 집적도는 물리적으로 피할 수 없는 현상이다. 이러한 현상을 디지털 신호처리 기술을 적용하여 극복할 수 있다. 센서계의 한계로 인한 문제는 디지털 영상의 가장 큰 문제중의 하나이며, 이러한 한계를 극복하는 고해상도 영상 복원 방법들은 많은 학자들에 의해 제안되어 왔다. 본 논문에서는, 기존의 고해상도 영상 복원 방법들과는 달리 원영상의 공간적 고주파 성분의 특성을 분석과, 주어진 저해상도 영상들의 부화소 단위 움직임 추정 오류에 대한 분석을 통해 영상 복원과정에 이러한 분석들의 결과를 반영한다. 위에서 언급한 추정 오류는 우리에게 하나의 잡음 형태로 나타날 수 있다. 이 잡음은 추정이 이루어지는 축에 따라 그 양이 다르게 나타나게 되고, 이러한 현상은 목적이 되는 영상의 공간적 고주파 성분의 분포와 밀접한 관련이 있다. 우리는 복원 과정에 기존의 영상복원 방법중의 하나인 정규화 방법을 도입한다. 위에서 분석된 현상을 이 복원 과정에 반영하여 기존의 고해상도 영상 복원 방법보다 향상된 결과를 얻을 수 있었다. 결론적으로, 제안하는 알고리즘은 부화소 단위 움직임 추정 오류의 분석 결과를 반영하므로 이러한 추정 오류에 강한 알고리즘이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.