• 제목/요약/키워드: 영상변화 탐지

검색결과 418건 처리시간 0.054초

내리막 달리기 후 국소 근손상의 영상학적 비교분석 : 운동 강도의 영향 (Evaluating Quadriceps Muscle Damage after Downhill Running of Different Intensities using Ultrasonography)

  • 선민규;김춘섭;김맹규
    • 한국응용과학기술학회지
    • /
    • 제36권3호
    • /
    • pp.1028-1040
    • /
    • 2019
  • 본 연구는 내리막 달리기(downhill running, DR) 후 초음파 영상분석을 이용해 대퇴사두근 무리(quadriceps group, QG) 내 근손상의 국소화 여부를 검증하고, DR 동안 운동 강도가 운동유발성 근손상(exercise-induced muscle damage, EIMD) 및 근육 반향세기 변화에 미치는 영향을 규명하려는 목적으로 수행되었다. 규칙적인 신체활동이 없는 건강한 남성 11명이 무작위 교차설계에 따라 서로 다른 강도[low-intensity DR session($50%HR_{max}$), LDR; high-intensity DR session($70%HR_{max}$), HDR]의 DR 운동을 수행하였다. DR 후 EIMD의 심각성은 혈청크레아틴 키나아제(creatine kinase, CK) 활성 수준 변화와 함께 신경근 기능 지수로서 무릎 신전근의 최대 수의적 등척성 수축(maximal voluntary isometric contraction, MVIC) 및 관절가동범위(range of motion, ROM) 변화를 통해 결정되었다. 회색조 분석을 적용한 근육 반향세기 평가는 DR에 따른 QG 내 국소 근육별(rectus femoris, RF; vastus lateralis, VL; vastus medialis, VM; vastus intermedius, VI) 손상 양상을 탐지하기 위해 활용되었다. 모든 세션에서 혈청 CK 활성 수준과 VL 및 VM의 근통증 정도는 운동 후 24시간째(RF의 경우 각각 LDR 24시간째와 HDR 48시간째) 최대에 이르렀으며, 혈청 CK 수준에서 운동 강도에 따른 유의한 차이(p<.05)가 나타난 반면 근통증에서 세션 간 통계적 차이는 없었다. 무릎 관절을 이용한 MVIC 및 ROM과 같은 신경근 기능 지표 및 VM을 제외한 모든 QG 근육 반향세기는 운동 직후 극적으로 감소 또는 증가 후 72시간까지 점진적 회복 양상을 나타내었다. 그러나 신경근 기능 지표에서 운동 강도에 따른 통계적 차이는 없었으나 RF 및 VL 반향세기에서 세션 내 및 세션 간 유의한 차이(p<.01)를 나타내었다. 본 연구의 결과로 ECC를 함유한 DR 운동 시 운동 강도는 DOMS 및 신경근 기능 지표에 부분적으로 영향을 미칠 가능성이 있으며, 특히 혈청 CK 수준과 함께 RF 및 VL의 근육 반향세기는 운동 강도의 영향을 직접적으로 반영한다는 사실을 알 수 있다. 또한, 현재 연구결과는 DR 동안 ECC를 겪는 QG 내 국소 근육 간 근손상 정도가 다를 수 있으며 초음파 근육 반향세기가 국소 근육의 EIMD 심각성을 차별화할 수 있는 유용한 평가기법임을 뒷받침하고 있다.

국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의 (CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution)

  • 윤성주;손종환;박형준;서정훈;이유진;반승환;최재승;김병국;이현직;이규성;권기억;이계동;정형섭;정윤재;최현;구대성;최명진;신윤수;최재완;어양담;정종철;한유경;오재홍;이수암;장은미;김태정
    • 대한원격탐사학회지
    • /
    • 제36권5_2호
    • /
    • pp.867-879
    • /
    • 2020
  • 본격적인 우주기술 활용시대가 전망되는 현재의 시점에서 고해상도 영상취득이 가능한 국토관측위성의 발사가 2021년으로 예정되어 있다. 이에 따라 국토관측위성의 지상국의 핵심설계요소로 영상사용자의 위성영상 활용성과 작업자의 처리효율성 증대가 강조되어 왔다. 이에 대응하여, 국토관측위성의 수집, 처리, 저장, 관리 및 활용을 위한 핵심기술과 국토관측위성 지상국의 운영시스템을 개발하는 국토관측위성 수집 및 활용기술개발 연구사업이 진행되었다. 본 논문에서는 상기 연구개발사업의 성과로 개발된 국토관측위성 활용핵심기술과 지상국 운영시스템 개발결과를 소개한다. 개발된 지상국 운영시스템은 한반도 전역의 GCP(Ground Control Point) chip DB(Database)와 DEM(Digital Elevation Model) DB를 시스템 내에 구축하여 자동화된 방식으로 정밀정사영상을 생성하기 위한 기술 및 시스템을 구현하였다. 나아가 생성된 정밀정사영상을 1:5,000 도엽단위로 분할한 도엽정사영상을 생산하여 향후 분석준비자료 (ARD(Analysis Ready Data)) 체계로 발전할 수 있도록 개발하였다. 또한 정밀정사영상 및 도엽정사영상으로부터 DSM(Digital Surface Model)자료, 변화탐지지도, 객체추출지도 등 다양한 활용산출물이 체계적으로 생산될 수 있도록 활용산출물 생산 SW를 지상국 운영시스템과 연동시킬 수 있게 개발하였다. 본 연구진이 개발한 국토위성정보 활용기술 및 운영시스템은 국내 최초로 한반도 GCP chip DB구축을 통해서 자동화된 정밀정사영상생성 기술을 확보하고 다양한 활용산출물의 생산을 위성지상국 운영시스템에 접목했다는 점에서 의의가 있다고 판단된다. 개발된 국토위성정보 운영시스템은 국토관측위성의 주 활용부처인 국토지리정보원 국토위성정보활용센터에 설치되었으며, 향후 동 센터의 업무에 크게 기여할 것으로 바라보고 있다. 또한, 향후 발사예정인 여러 저궤도 지구관측위성의 지상국 시스템에 대한 기준을 제시할 수 있을 것으로 기대한다.

이방성 레이다 시추공 토모그래피와 그 응용 (Anisotrpic radar crosshole tomography and its applications)

  • 김정호;조성준;이명종
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2005년도 제7회 특별심포지움 논문집
    • /
    • pp.21-36
    • /
    • 2005
  • 우리나라의 지질은 화강암과 편마암이 주를 이루나 시추공 레이다 토모그래피 탐사자료에서 이방성이 나타나는 것은 드문 일이 아니며 심지어는 결정질 암반에서 나타나기도 한다. 이방성 문제를 해결하기 위해 불균질 타원형 이방성 매질을 가정하여 토모그래피 역산 알고리듬을 개발하였으며, 이를 계속적으로 개량하여 왔다. 개발된 알고리듬에 의한 역산 결과는 세 종류의 변수, 즉 최고속도, 최저속도, 대칭축 방향의 세 종류의 토모그램으로 영상화할 수 있다. 이 논문에서는 먼저 개발된 알고리듬에 대하여 논의하고, 국내에서 수행한 4가지의 이방성 레이다 토모그래피 탐사 사례에 대해 소개한다 전반부의 두 사례는 토목 구조물의 건설을 위한 지반조사의 일환으로 수행한 사례로서, 주목적은 석회암 용식공동의 탐지에 있었다. 후반부의 두 탐사 사례는 결정질 암반인 편마암과 화강암 지역에서 수행한 사례이다. 이들 4가지 사례에서 이방성을 야기하는 원인은, 화강암 지역에서 수행한 사례에서는 미세 열극이 일정한 방향으로 배열함에 있었으며, 나머지 석회암과 편마암 지역에서의 사례는 특정광물이 일정한 방향으로 배열함에 있었다 이들 이방성 토모그래피 탐사 사례에 대한 논의를 통하여, 지하 매질이 이방성을 될 경우, 이방성의 분포는 지하의 상태 변화를 이해하는 데에 매우 중요한 역할을 하며, 이방성 분포 자체가 매우 중요한 정보라는 결론을 얻을 수 있었다. 특히 최고속도와 최저속도의 차이를 최고속도로 정규화한 값으로 정의한 이방성 계수와 대칭축 방향은 이방성 토모그래피 영상을 해석함에 매우 유용함을 확인하였다.verlapping Rate(DOR)는 상호작용 예측 정확도의 중요한 요소임을 찾아 내었다.time을 최소화하는 동시에 클라이언트들의 제한된 에너지 소비를 최소화하는데 목적이 있다. 제안기법에 대한 평가는 수학적 분석을 통해 HIDAF 기법과 기존의 브로드캐스트 기법의 성능을 비교 분석한다.하였으나 사료효율은 증진시켰으며, 후자(사양, 사료)와의 상호작용은 나타나지 않았다. 이상의 결과는 거세비육돈에서 1) androgen과 estrogen은 공히 자발적인 사료섭취와 등지방 침적을 억제하고 IGF-I 분비를 증가시키며, 2) 성선스테로이드호르몬의 이 같은 성장에 미치는 효과의 일부는 IGF-I을 통해 매개될 수도 있을을 시사한다. 약 $70 {\~} 90\%$의 phenoxyethanol이 유상에 존재하였다. 또한, 미생물에 대한 항균력도 phenoxyethanol이 수상에 많이 존재할수록 증가하는 경향을 나타내었다. 따라서, 제형 내 oil tomposition을 변화시킴으로써 phenoxyethanol의 사용량을 줄일 수 있을 뿐만 아니라, 피부 투과를 감소시켜 보다 피부 자극이 적은 저자극 방부시스템 개발이 가능하리라 보여 진다. 첨가하여 제조한 curd yoghurt는 저장성과 관능적인 면에서 우수한 상품적 가치가 인정되는 새로운 기능성 신제품의 개발에 기여할 수 있을 것으로 사료되었다. 여자의 경우 0.8이상이 되어서 심혈관계 질환의 위험 범위에 속하는 수준이었다. 삼두근의 두겹 두께는 남녀 각각 $20.2\pm8.58cm,\;22.2\pm4.4

  • PDF

Positive Random Forest 기반의 강건한 객체 추적 (Positive Random Forest based Robust Object Tracking)

  • 조윤섭;정수웅;이상근
    • 전자공학회논문지
    • /
    • 제52권6호
    • /
    • pp.107-116
    • /
    • 2015
  • 고성능 컴퓨터와 디지털 카메라의 보급으로 컴퓨터를 이용한 객체 탐지 및 추적은 컴퓨터 비전의 다양한 응용분야에서 중요한 문제로 대두 되고 있다. 또한, 지능형 자동화 감시 장치, 영상 분석 장치, 자동화된 로봇 분야 등에서 그 필요성이 점점 부각 되고 있다. 객체 추적은 카메라를 이용하여 움직이는 객체의 위치를 찾는 처리 과정을 의미 하며, 강건한 객체 추적을 위해서는 객체의 스케일, 형태 변화, 회전에 강건하고 정확한 객체의 위치를 파악할 수 있어야한다. 본 논문에서는 랜덤 포레스트를 이용한 강건한 객체 추적에 대한 알고리즘을 제안하였다. 정확한 객체의 위치를 찾기 위해 지역 공분산과 ZNCC (Zeros Mean Normalized Cross Correlation)를 사용하여 객체를 검출하고 검출된 객체를 5개의 부분으로 나누어 랜덤 포레스트로 객체가 잘 검출 되었는지 검증 한다. 검증된 객체 중 모델을 선택하여 객체 검출이 잘못 되었다고 판단된 경우 입력 모델을 변경하여 정확한 객체를 찾도록 하였다. 제안된 알고리즘과 기존의 알고리즘들을 비교 하였을 때 비교적 정확한 객체의 위치를 잘 찾아 가는 것을 확인하였다.

드론 장착 다중분광 카메라, 소형 필드 초분광계, 휴대용 잎 반사계로부터 관측된 서로 다른 공간규모의 광화학반사지수 평가 (Assessment of Photochemical Reflectance Index Measured at Different Spatial Scales Utilizing Leaf Reflectometer, Field Hyper-Spectrometer, and Multi-spectral Camera with UAV)

  • 류재현;오도혁;장선웅;정회정;문경환;조재일
    • 대한원격탐사학회지
    • /
    • 제34권6_1호
    • /
    • pp.1055-1066
    • /
    • 2018
  • 식생의 광학적 특성을 기반으로 만들어진 식생지수들은 식물의 생물생산량뿐만 아니라 생리적 활성을 나타내고 있다. 식생지수의 활용은 위성에 장착된 다중분광 광학 센서의 발달에 힘입은 바가 크지만, 관측 공간규모에 따라 식생지수의 민감도가 달라질 수 있어 여러 규모에서의 비교 관측이 요구된다. 특히 광화학반사지수(PRI, Photochemical Reflectance Index)는 광합성능과 식물 스트레스 탐지에 유용한 것으로 알려져 있지만 올바른 해석을 위한 다양한 공간규모에서의 선행연구가 드물다. 본 연구에서는 드론에 장착된 다중분광 카메라, 소형 필드 초분광계, 휴대용 잎 반사계를 이용해 마늘 작물을 대상으로 서로 다른 공간규모의 PRI를 평가하였다. 잎 규모에서 하루 중 PRI는 잎의 윗면이 향하는 방위에 따라 서로 다른 시간에 최저값을 보였으며, 이는 어떤 순간에 잎마다 다른 광이용효율(LUE, Light Use Efficiency) 상태라는 것을 의미한다. 잎 규모에서는 식생피복율에 영향을 받지 않으므로 PRI 생물계절적 변화는 생육 초기에 개체 및 군락 규모보다 값이 높게 나타났다. 개체 및 군락 규모에서 PRI는 생물량을 나타내는 NDVI(Normalized Difference Vegetation Index)와는 달리 공간적 변동성이 크게 나타났다. 반면, 지상의 개체들 규모의 식생지수를 드론 영상의 관측 지점 값과 비교해 보면 NDVI에 비해 PRI가좀더 좋은 일치도를 보였다. 이러한 결과는 서로 다른 공간규모에서 관측된 PRI를 이해하고 활용하는데 도움이 될 것이다.

Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출 (An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images)

  • 최소연;윤유정;강종구;박강현;김근아;이슬찬;최민하;정하규;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.925-938
    • /
    • 2022
  • 농업용 저수지는 전국적으로 중요한 수자원으로 기후변화에 따른 가뭄과 같은 이상기후의 영향에 취약한 특성을 가지며 적절한 운영을 위해 강화된 관리가 필요하다. 지속적인 모니터링을 통한 수위 추적(water level tracking)이 필요하지만 현실적인 문제로 현장 실측 및 관측이 어려운 실정이다. 본 연구는 저수지 수표면적을 측정하기 위해 광역 모니터링이 가능한 위성레이더 자료를 이용하여 4가지 AI 모델 간의 수체 탐지 성능에 대해 객관적인 비교를 제시한다. 위성 레이더자료는 Sentinel-1 SAR 이미지를 사용하였으며, 광학영상과 달리 기상환경에 영향을 적게 받기 때문에 장기 모니터링에 적합하다. 드론 이미지, Sentinel-1 SAR 그리고 DSM 데이터를 사용하여 Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), Automated Machine Learning (AutoML)의 4가지 AI 모델을 구축했다. 연구대상 저수지는 총 22개소로 유효저수량이 30만톤 미만의 중소형 저수지이다. 총 45개 이미지가 모델 훈련과 검증에 사용되었으며, 연구 결과 AutoML 모델이 Accuracy=0.92, mIoU=0.81로 다른 3가지 모델에 비해 수체 픽셀 분류에서 0.01-0.03 더 나은 것을 보여주었다. 해당 결과는 SAR 영상으로부터 AutoML을 이용한 중소형 저수지 대상의 수체 분류 기법이 기존의 머신러닝 기법만큼의 성능을 보이는 것을 보여주었고, 학습을 통한 수표면적 분류 기술의 저수지 모니터링에 대한 적용 가능성을 보여주었다.

Sentinel 위성영상과 기계학습을 이용한 국내산불 피해강도 탐지 (Wildfire Severity Mapping Using Sentinel Satellite Data Based on Machine Learning Approaches)

  • 심성문;김우혁;이재세;강유진;임정호;권춘근;김성용
    • 대한원격탐사학회지
    • /
    • 제36권5_3호
    • /
    • pp.1109-1123
    • /
    • 2020
  • 국토 대부분이 산림으로 구성되어 있는 대한민국은 매 년 많은 산불이 발생한다. 산불은 토양의 전단강도를 약화시켜 산사태에 취약한 토양층을 만들기도 하고, 수목의 복구가능여부에 따라 다른 계획 설립이 필요하기 때문에 산불피해면적 뿐만 아니라 피해강도에 대한 파악도 중요하다. 위성 원격탐사를 통한 산불피해강도 추정 연구가 많이 수행되어 왔으나, NDVI(Normalized Difference Vegetation Index)와 NBR(Normalized Burn Ratio) 등과 같은 단일 인자의 시계열 변화만을 이용하여 피해강도를 파악하기에는 한계가 있다. 본 연구에서는 Sentinel-1A SAR-C (Synthetic Aperture Radar-C)와 Sentinel-2A MSI(Multi Spectral Instrument)센서의 자료를 이용하여 기계학습방법을 통한 산불 피해강도 탐지 모델들을 제시하였다. 2017년 5월 삼척, 2019년 4월 강릉·동해, 2019년 4월 고성·속초 총 세개의 산불사례를 이용하여 RF(Random forest), LR(Logistic regression), SVM(Support Vector Machine)기계학습 모델을 구축하였다. 연구결과, random forest 모델이 82.3%의 총정확도로 가장 높은 성능을 보여주었다. 모델의 범용성 및 학습자료 민감도 확인을 위해 사례교차검증도 추가 시행하였는데, 그 결과 사례들의 시기적 차이에 의한 식생활력 및 재생도의 차이에 민감도가 높음을 확인하였다. 이는 추후 다양한 시공간적 사례를 추가할 시 개선이 될 것으로 보인다.

고해상도 위성자료를 이용한 용담댐 유역 저수위/저수량 모니터링 및 예측 기술 개발 (Development of a Storage Level and Capacity Monitoring and Forecasting Techniques in Yongdam Dam Basin Using High Resolution Satellite Image)

  • 윤선권;이성규;박경원;장상민;이진영
    • 대한원격탐사학회지
    • /
    • 제34권6_1호
    • /
    • pp.1041-1053
    • /
    • 2018
  • 본 연구에서는 용담댐 유역을 대상으로 저수위/저수량 모니터링 및 예측을 위하여 고해상도 위성관측 자료를 이용하는 방법과 위성으로부터 추출한 강수량 자료로부터 가뭄지수를 이용한 저수위를 모니터링하고 SSA를 이용한 PCA방법으로 예측모델을 구축하여 가뭄을 예측하는 방법을 개발하였다. 용담댐 저수위와 SPI(3)와의 상관계수가 0.78로 매우 높은 상관성을 보였으며, 위성자료를 통하여 산정한 가뭄지수를 활용하여 댐 저수위/저수량 모니터링 및 예측 가능성을 진단하였다. SSA에 의한 주성분 분석결과 SPI(3)과 각 RC자료의 상관관계를 분석한 결과 CC=0.87~0.99의 높은 상관성을 보였으며, 표준화된 댐 저수위(N-W.S.L.)와 RC자료의 상관관계를 분석한 결과 CC=0.83~0.97의 비교적 높은 상관성을 보임을 확인하였다. 또한, Sentinel-2 위성의 MSI (Multi-Spectral Instrument) 센서로 댐수위의 변화를 모니터링하기 위해 지수 기법을 적용하여 수체 탐지 알고리즘을 개발하였으며, 용담댐유역에 대해 2016년부터 2018년까지의 수계 면적 변화를 분석하였다. 이를 기반으로 Sentinel-2 위성영상으로 추출한 수계 면적 변화를 이용하여 가뭄 감시 분야에 대한 활용 가능성을 제시하였다. 본 연구의 결과는 다양한 위성관측자료로부터 미계측 지역의 저수량 모니터링과 수문학적 가뭄 모니터링/예측에 활용이 가능할 것이다.