• Title/Summary/Keyword: 영상도시

Search Result 655, Processing Time 0.025 seconds

Crosswalk Detection Model for Visually impaired Using Deep Learning (딥러닝을 이용한 시각장애인용 횡단보도 탐지 모델 연구)

  • Junsoo Kim;Hyuk Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.67-75
    • /
    • 2024
  • Crosswalks play an important role for the safe movement of pedestrians in a complex urban environment. However, for the visually impaired, crosswalks can be a big risk factor. Although assistive tools such as braille blocks and acoustic traffic lights exist for safe walking, poor management can sometimes act as a hindrance to safety. This paper proposes a method to improve accuracy in a deep learning-based real-time crosswalk detection model that can be used in applications for pedestrian assistance for the disabled at the beginning. The image was binarized by utilizing the characteristic that the white line of the crosswalk image contrasts with the road surface, and through this, the crosswalk could be better recognized and the location of the crosswalk could be more accurately identified by using two models that learned the whole and the middle part of the crosswalk, respectively. In addition, it was intended to increase accuracy by creating a boundary box that recognizes crosswalks in two stages: whole and part. Through this method, additional frames that the detection model did not detect in RGB image learning from the crosswalk image could be detected.

Analysis of the Status of Light Pollution and its Potential Effect on Ecosystem of the Deogyusan National Park (덕유산국립공원 빛공해 현황 및 빛공해가 공원 생태계에 미치는 잠재적 영향 분석)

  • Sung, Chan Yong;Kim, Young-Jae
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • This study characterized the spatial and seasonal patterns of light pollution in the Deogyusan National Park and examined the potential effects of light pollution on ecosystems in the park using light intensities derived from VIIRS (Visible Infrared Imaging Radiometer Suite) DNB (Day and Night Band) nightlight images collected in January and August 2018. Results showed that the Muju Deogyusan resort had the greatest light intensity than other sources of light pollution in the park, and light intensity of the resort was much higher in January than in August, suggesting that artificial lights in ski slopes and facilities were the major source of light pollution in the park. An analysis of an urban-natural light pollution gradient along a neighboring urban area through the inside of the park indicated that light radiated from a light pollution source permeated for up to 1km into the adjacent area and contaminated the edge area of the park. Of the legally protected species whose distributions were reported in literature, four mammals (Martes flavigula, Mustela nivalis, Prionailurus bengalensis, Pteromys volans aluco), two birds (Falco subbuteo, Falco tinnunculus), and nine amphibians and reptiles (Onychodactylus koreanus, Hynobius leechii, Karsenia koreana, Rana dybowskii, Rana huanrenensis, Elaphe dione, Rhabdophis tigrinus, Gloydius ussuriensis, Gloydius saxatilis) inhabited light-polluted areas. Of those species inhabiting light-polluted areas, nocturnal species, such as Prionailurus bengalensis and Pteromys volans aluco, in particular, were vulnerable to light pollution. These results implied that protecting ecosystems from light pollution in national parks requires managing nighttime light in the parks and surrounding areas and making a plan to manage nighttime light pollution by taking into account ecological characteristics of wild animals in the parks.

Determination of Fire Severity and Deduction of Influence Factors Through Landsat-8 Satellite Image Analysis - A Case Study of Gangneung and Donghae Forest Fires - (Landsat-8 위성영상 분석을 통한 산불피해 심각도 판정 및 영향 인자 도출 - 강릉, 동해 산불을 사례로 -)

  • Soo-Dong Lee;Gyoung-Sik Park;Chung-Hyeon Oh;Bong-Gyo Cho;Byeong-Hyeok Yu
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.3
    • /
    • pp.277-292
    • /
    • 2024
  • In order to manage large-scale forest fires concentrated in Gangwon-do and Gyeongsangbuk-do with severe topographical heterogeneity, a decision-making process through efficient and rapid damage assessment using satellite images is essential. Accordingly, this study targets a large-scale forest fire that ignited in Gangneung and the Donghae, Gangwon-do on March 5, 2022, and was extinguished around 19:00 on March 8, to estimate the fire severity using dNBR and derive environmental factors that affect the grade. As environmental factors, we quantified the regular vegetation index representing vegetation or fuel type, the forest index that classifies tree species, the regular moisture index representing moisture content, and DEM in relation to topography, and then analyzed the correlation with the fire severity. In terms of fire severity, the widest range was 'Unbured' at 52.4%, followed by low severity at 42.9%, medium-low severity at 4.3%, and medium-high severity at 0.4%. Environmental factors showed a negative correlation with dNDVI and dNDWI, and a positive correlation with slope. Regarding vegetation, the differences between coniferous, broad-leaved, and other groups in dNDVI, dNIWI, and slope, which were analyzed to affect the fire severity, were analyzed to be significant with p-value < 2.2e-16. In particular, the difference between coniferous and broad-leaved forests was clear, and it was confirmed that coniferous forest suffered more damage than broad-leaved forest due to the higher fire severity in the Gangwon-do region, including Pinus densiflora, which are dominant species, as well as P. koraiensis, P. rigida and P. thunbergii.

Urban Building Change Detection Using nDSM and Road Extraction (nDSM 및 도로망 추출 기법을 적용한 도심지 건물 변화탐지)

  • Jang, Yeong Jae;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.237-246
    • /
    • 2020
  • Recently, as high resolution satellites data have been serviced, frequent DSM (Digital Surface Model) generation over urban areas has been possible. In addition, it is possible to detect changes using a high-resolution DSM at building level such that various methods of building change detection using DSM have been studied. In order to detect building changes using DSM, we need to generate a DSM using a stereo satellite image. The change detection method using D-DSM (Differential DSM) uses the elevation difference between two DSMs of different dates. The D-DSM method has difficulty in applying a precise vertical threshold, because between the two DSMs may have elevation errors. In this study, we focus on the urban structure change detection using D-nDSM (Differential nDSM) based on nDSM (Normalized DSM) that expresses only the height of the structures or buildings without terrain elevation. In addition, we attempted to reduce noise using a morphological filtering. Also, in order to improve the roadside buildings extraction precision, we exploited the urban road network extraction from nDSM. Experiments were conducted for high-resolution stereo satellite images of two periods. The experimental results were compared for D-DSM, D-nDSM, and D-nDSM with road extraction methods. The D-DSM method showed the accuracy of about 30% to 55% depending on the vertical threshold and the D-nDSM approaches achieved 59% and 77.9% without and with the morphological filtering, respectively. Finally, the D-nDSM with the road extraction method showed 87.2% of change detection accuracy.

Evaluation of Space-based Wetland InSAR Observations with ALOS-2 ScanSAR Mode (습지대 변화 관측을 위한 ALOS-2 광대역 모드 적용 연구)

  • Hong, Sang-Hoon;Wdowinski, Shimon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.447-460
    • /
    • 2022
  • It is well known that satellite synthetic aperture radar interferometry (InSAR) has been widely used for the observation of surface displacement owing to earthquakes, volcanoes, and subsidence very precisely. In wetlands where vegetation exists on the surface of the water, it is possible to create a water level change map with high spatial resolution over a wide area using the InSAR technique. Currently, a number of imaging radar satellites are in operation, and most of them support a ScanSAR mode observation to gather information over a large area at once. The Cienaga Grande de Santa Marta (CGSM) wetland, located in northern Colombia, is a vast wetland developed along the Caribbean coast. The CGSM wetlands face serious environmental threats from human activities such as reclamation for agricultural uses and residential purposes as well as natural causes such as sea level rise owing to climate change. Various restoration and protection plans have been conducted to conserve these invaluable environments in recognition of the ecological importance of the CGSM wetlands. Monitoring of water level changes in wetland is very important resources to understand the hydrologic characteristics and the in-situ water level gauge stations are usually utilized to measure the water level. Although it can provide very good temporal resolution of water level information, it is limited to fully understand flow pattern owing to its very coarse spatial resolution. In this study, we evaluate the L-band ALOS-2 PALSAR-2 ScanSAR mode to observe the water level change over the wide wetland area using the radar interferometric technique. In order to assess the quality of the interferometric product in the aspect of spatial resolution and coherence, we also utilized ALOS-2 PALSAR-2 stripmap high-resolution mode observations.

A study on improving self-inference performance through iterative retraining of false positives of deep-learning object detection in tunnels (터널 내 딥러닝 객체인식 오탐지 데이터의 반복 재학습을 통한 자가 추론 성능 향상 방법에 관한 연구)

  • Kyu Beom Lee;Hyu-Soung Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.129-152
    • /
    • 2024
  • In the application of deep learning object detection via CCTV in tunnels, a large number of false positive detections occur due to the poor environmental conditions of tunnels, such as low illumination and severe perspective effect. This problem directly impacts the reliability of the tunnel CCTV-based accident detection system reliant on object detection performance. Hence, it is necessary to reduce the number of false positive detections while also enhancing the number of true positive detections. Based on a deep learning object detection model, this paper proposes a false positive data training method that not only reduces false positives but also improves true positive detection performance through retraining of false positive data. This paper's false positive data training method is based on the following steps: initial training of a training dataset - inference of a validation dataset - correction of false positive data and dataset composition - addition to the training dataset and retraining. In this paper, experiments were conducted to verify the performance of this method. First, the optimal hyperparameters of the deep learning object detection model to be applied in this experiment were determined through previous experiments. Then, in this experiment, training image format was determined, and experiments were conducted sequentially to check the long-term performance improvement through retraining of repeated false detection datasets. As a result, in the first experiment, it was found that the inclusion of the background in the inferred image was more advantageous for object detection performance than the removal of the background excluding the object. In the second experiment, it was found that retraining by accumulating false positives from each level of retraining was more advantageous than retraining independently for each level of retraining in terms of continuous improvement of object detection performance. After retraining the false positive data with the method determined in the two experiments, the car object class showed excellent inference performance with an AP value of 0.95 or higher after the first retraining, and by the fifth retraining, the inference performance was improved by about 1.06 times compared to the initial inference. And the person object class continued to improve its inference performance as retraining progressed, and by the 18th retraining, it showed that it could self-improve its inference performance by more than 2.3 times compared to the initial inference.

Comparative Analysis of the Effects of Heat Island Reduction Techniques in Urban Heatwave Areas Using Drones (드론을 활용한 도시폭염지역의 열섬 저감기법 효과 비교 분석)

  • Cho, Young-Il;Yoon, Donghyeon;Shin, Jiyoung;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1985-1999
    • /
    • 2021
  • The purpose of this study is to apply urban heat island reduction techniques(green roof, cool roof, and cool pavements using heat insulation paint or blocks) recommended by the Environmental Protection Agency (EPA) to our study area and determine their actual effects through a comparative analysis between land cover objects. To this end, the area of Mugye-ri, Jangyu-myeon, Gimhae, Gyeongsangnam-do was selected as a study area, and measurements were taken using a drone DJI Matrice 300 RTK, which was equipped with a thermal infrared sensor FLIR Vue Pro R and a visible spectrum sensor H20T 1/2.3" CMOS, 12 MP. A total of nine heat maps, land cover objects (711) as a control group, and heat island reduction technique-applied land covering objects (180) were extracted every 1 hour and 30 minutes from 7:15 am to 7:15 pm on July 27. After calculating the effect values for each of the 180 objects extracted, the effects of each technique were integrated. Through the analysis based on daytime hours, the effect of reducing heat islands was found to be 4.71℃ for cool roof; 3.40℃ for green roof; and 0.43℃ and -0.85℃ for cool pavements using heat insulation paint and blocks, respectively. Comparing the effect by time period, it was found that the heat island reduction effect of the techniques was highest at 13:00, which is near the culmination hour, on the imaging date. Between 13:00 and 14:30, the efficiency of temperature reduction changed, with -8.19℃ for cool roof, -5.56℃ for green roof, and -1.78℃ and -1.57℃ for cool pavements using heat insulation paint and blocks, respectively. This study was a case study that verified the effects of urban heat island reduction techniques through the use of high-resolution images taken with drones. In the future, it is considered that it will be possible to present case studies that directly utilize micro-satellites with high-precision spatial resolution.

Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning (다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정)

  • Sung, Taejun;Sim, Seongmun;Jang, Eunna;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.747-763
    • /
    • 2022
  • Ocean salinity affects ocean circulation on a global scale and low salinity water around coastal areas often has an impact on aquaculture and fisheries. Microwave satellite sensors (e.g., Soil Moisture Active Passive [SMAP]) have provided sea surface salinity (SSS) based on the dielectric characteristics of water associated with SSS and sea surface temperature (SST). In this study, a Light Gradient Boosting Machine (LGBM)-based model for generating high resolution SSS from Geostationary Ocean Color Imager (GOCI) data was proposed, having machine learning-based improved SMAP SSS by Jang et al. (2022) as reference data (SMAP SSS (Jang)). Three schemes with different input variables were tested, and scheme 3 with all variables including Multi-scale Ultra-high Resolution SST yielded the best performance (coefficient of determination = 0.60, root mean square error = 0.91 psu). The proposed LGBM-based GOCI SSS had a similar spatiotemporal pattern with SMAP SSS (Jang), with much higher spatial resolution even in coastal areas, where SMAP SSS (Jang) was not available. In addition, when tested for the great flood occurred in Southern China in August 2020, GOCI SSS well simulated the spatial and temporal change of Changjiang Diluted Water. This research provided a potential that optical satellite data can be used to generate high resolution SSS associated with the improved microwave-based SSS especially in coastal areas.

Development and Application of the Slope Management Program in Urban Area (대도시 사면관리프로그램 개발 및 적용)

  • Kim, Kyeong-Su;Chae, Byung-Gon;Cho, Yong-Chan;Lee, Choon-Oh;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.15-25
    • /
    • 2007
  • In general, the life and asset casualties that occur due to landslide or slope failure in urban areas are larger than that in rural areas. In order to reduce the casualties, a slope management program is necessary to categorize slopes based on properties and to manage them systematically. The slope management system is the establishment of the data base for the geological and geotechnical factor according to slope stability, and the utilization of the data base to manage slopes. The suitable system must develop to slopes in urban area through the survey, analysis and evaluation process. Based on the above necessity, the slope management program which is applicable to slope management in an urban area has been developed at Hwangryung Mt. in Busan as a target area. The developed slope management program has various functions such as slope ID number of each slope or sub-region of a mountain, making a slope data sheet, analysis and grouping of slope stability, and establishment of a data base. The slope management program is constructed by use of GIS, and the survey, test and analysis data according to all slopes can be input and edited into the program. The program can also be utilized practically by end users due to the convenient input, edition printing, management and operation of slope data. Therefore, the slope management system has been established on the application of the developed program in Busan which is located in slope area. As the system is widely applied to other cities, the slope in urban area can be managed systematically and the slope hazards can be minimized.

Urban archaeological investigations using surface 3D Ground Penetrating Radar and Electrical Resistivity Tomography methods (3차원 지표레이다와 전기비저항 탐사를 이용한 도심지 유적 조사)

  • Papadopoulos, Nikos;Sarris, Apostolos;Yi, Myeong-Jong;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.56-68
    • /
    • 2009
  • Ongoing and extensive urbanisation, which is frequently accompanied with careless construction works, may threaten important archaeological structures that are still buried in the urban areas. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) methods are most promising alternatives for resolving buried archaeological structures in urban territories. In this work, three case studies are presented, each of which involves an integrated geophysical survey employing the surface three-dimensional (3D) ERT and GPR techniques, in order to archaeologically characterise the investigated areas. The test field sites are located at the historical centres of two of the most populated cities of the island of Crete, in Greece. The ERT and GPR data were collected along a dense network of parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way, applying specific filters to the data in order to enhance their information content. Finally, horizontal depth slices representing the 3D variation of the physical properties were created. The GPR and ERT images significantly contributed in reconstructing the complex subsurface properties in these urban areas. Strong GPR reflections and highresistivity anomalies were correlated with possible archaeological structures. Subsequent excavations in specific places at both sites verified the geophysical results. The specific case studies demonstrated the applicability of ERT and GPR techniques during the design and construction stages of urban infrastructure works, indicating areas of archaeological significance and guiding archaeological excavations before construction work.