• Title/Summary/Keyword: 영상도시

Search Result 656, Processing Time 0.023 seconds

Detection for Region of Volcanic Ash Fall Deposits Using NIR Channels of the GOCI (GOCI 근적외선 채널을 활용한 화산재 퇴적지역 탐지)

  • Sun, Jongsun;Lee, Won-Jin;Park, Sun-Cheon;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1519-1529
    • /
    • 2018
  • The volcanic ash can spread out over hundreds of kilometers in case of large volcanic eruption. The deposition of volcanic ash may induce damages in urban area and transportation facilities. In order to respond volcanic hazard, it is necessary to estimate efficiently the diffusion area of volcanic ash. The purpose of this study is to compare in-situ volcanic deposition and satellite images of the volcanic eruption case. In this study, we used Near-Infrared (NIR) channels 7 and 8 of Geostationary Ocean Color Imager (GOCI) images for Mt. Aso eruption in 16:40 (UTC) on October 7, 2016. To estimate deposit area clearly, we applied Principal Component Analysis (PCA) and a series of morphology filtering (Eroded, Opening, Dilation, and Closing), respectively. In addition, we compared the field data from the Japan Meteorological Agency (JMA) report about Aso volcano eruption in 2016. From the results, we could extract volcanic ash deposition area of about $380km^2$. In the traditional method, ash deposition area was estimated by human activity such as direct measurement and hearsay evidence, which are inefficient and time consuming effort. Our results inferred that satellite imagery is one of the powerful tools for surface change mapping in case of large volcanic eruption.

Evaluation of Geospatial Information Construction Characteristics and Usability According to Type and Sensor of Unmanned Aerial Vehicle (무인항공기 종류 및 센서에 따른 공간정보 구축의 활용성 평가)

  • Chang, Si Hoon;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.555-562
    • /
    • 2021
  • Recently, in the field of geospatial information construction, unmanned aerial vehicles have been increasingly used because they enable rapid data acquisition and utilization. In this study, photogrammetry was performed using fixed-wing, rotary-wing, and VTOL (Vertical Take-Off and Landing) unmanned aerial vehicles, and geospatial information was constructed using two types of unmanned aerial vehicle LiDAR (Light Detection And Ranging) sensors. In addition, the accuracy was evaluated to present the utility of spatial information constructed through unmanned aerial photogrammetry and LiDAR. As a result of the accuracy evaluation, the orthographic image constructed through unmanned aerial photogrammetry showed accuracy within 2 cm. Considering that the GSD (Ground Sample Distance) of the constructed orthographic image is about 2 cm, the accuracy of the unmanned aerial photogrammetry results is judged to be within the GSD. The spatial information constructed through the unmanned aerial vehicle LiDAR showed accuracy within 6 cm in the height direction, and data on the ground was obtained in the vegetation area. DEM (Digital Elevation Model) using LiDAR data will be able to be used in various ways, such as construction work, urban planning, disaster prevention, and topographic analysis.

A Basic Study on the Extraction of Dangerous Region for Safe Landing of self-Driving UAMs (자율주행 UAM의 안전착륙을 위한 위험영역 추출에 관한 기초 연구)

  • Chang min Park
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.24-31
    • /
    • 2023
  • Recently, interest in UAM (Urban Air Mobility, UAM), which can take off and land vertically in the operation of urban air transportation systems, has been increasing. Therefore, various start-up companies are developing related technologies as eco-friendly future transportation with advanced technology. However, studies on ways to increase safety in the operation of UAM are still insignificant. In particular, efforts are more urgent to improve the safety of risks generated in the process of attempting to land in the city center by UAM equipped with autonomous driving. Accordingly, this study proposes a plan to safely land by avoiding dangerous region that interfere when autonomous UAM attempts to land in the city center. To this end, first, the latitude and longitude coordinate values of dangerous objects observed by the sense of the UAM are calculated. Based on this, we proposed to convert the coordinates of the distorted planar image from the 3D image to latitude and longitude and then use the calculated latitude and longitude to compare the pre-learned feature descriptor with the HOG (Histogram of Oriented Gradients, HOG) feature descriptor to extract the dangerous Region. Although the dangerous region could not be completely extracted, generally satisfactory results were obtained. Accordingly, the proposed research method reduces the enormous cost of selecting a take-off and landing site for UAM equipped with autonomous driving technology and contribute to basic measures to reduce risk increase safety when attempting to land in complex environments such as urban areas.

  • PDF

Analysis of Future Land Use and Climate Change Impact on Stream Discharge (미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석)

  • Ahn, So Ra;Lee, Yong Jun;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.215-224
    • /
    • 2008
  • The effect of streamflow considering future land use change and vegetation index information by climate change scenario was assessed using SLURP (Semi-distributed Land-Use Runoff Process) model. The model was calibrated and verified using 4 years (1999-2002) daily observed streamflow data for the upstream watershed ($260.4km^2$) of Gyeongan water level gauging station. By applying CA-Markov technique, the future land uses (2030, 2060, 2090) were predicted after test the comparison of 2004 Landsat land use and 2004 CA-Markov land use by 1996 and 2000 land use data. The future land use showed a tendency that the forest and paddy decreased while urban, grassland and bareground increased. The future vegetation indices (2030, 2060, 2090) were estimated by the equation of linear regression between monthly NDVI of NOAA AVHRR images and monthly mean temperature of 5 years (1998-2002). Using CCCma CGCM2 simulation result based on SRES A2 and B2 scenario (2030s, 2060s, 2090s) of IPCC and data were downscaled by Stochastic Spatio-Temporal Random Cascade Model (SST-RCM) technique, the model showed that the future runoff ratio was predicted from 13% to 34% while the runoff ratio of 1999-2002 was 59%. On the other hand, the impact on runoff ratio by land use change showed about 0.1% to 1% increase.

Development of Tree Detection Methods for Estimating LULUCF Settlement Greenhouse Gas Inventories Using Vegetation Indices (식생지수를 활용한 LULUCF 정주지 온실가스 인벤토리 산정을 위한 수목탐지 방법 개발)

  • Joon-Woo Lee;Yu-Han Han;Jeong-Taek Lee;Jin-Hyuk Park;Geun-Han Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1721-1730
    • /
    • 2023
  • As awareness of the problem of global warming emerges around the world, the role of carbon sinks in settlement is increasingly emphasized to achieve carbon neutrality in urban areas. In order to manage carbon sinks in settlement, it is necessary to identify the current status of carbon sinks. Identifying the status of carbon sinks requires a lot of manpower and time and a corresponding budget. Therefore, in this study, a map predicting the location of trees was created using already established tree location information and Sentinel-2 satellite images targeting Seoul. To this end, after constructing a tree presence/absence dataset, structured data was generated using 16 types of vegetation indices information constructed from satellite images. After learning this by applying the Extreme Gradient Boosting (XGBoost) model, a tree prediction map was created. Afterward, the correlation between independent and dependent variables was investigated in model learning using the Shapely value of Shapley Additive exPlanations(SHAP). A comparative analysis was performed between maps produced for local parts of Seoul and sub-categorized land cover maps. In the case of the tree prediction model produced in this study, it was confirmed that even hard-to-detect street trees around the main street were predicted as trees.

A Study on the Methodology for Analyzing the Effectiveness of Traffic Safety Facilities Using Drone Images (드론 영상기반 교통안전시설 효과분석 방법론 연구)

  • Yong Woo Park;Yang Jung Kim;Shin Hyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.74-91
    • /
    • 2023
  • Several that analyzed the effectiveness of traffic safety facilities a method of comparing changes in the number of accidents, accident severity, speed through traffic accident data before and after installation or speed data collected from vehicle detection systems (VDS). , when traffic accident data is used, it takes a long time to collect because must be collected for at least one year before and after installation. , the road environment may change during this period, such as the addition of other traffic safety facilities in addition to the facilities to be analyzed. , the location of the VDSs for speed data is often different from the location where analysis is required, and there is a problem in that the investigators are exposed to the risk of traffic accident during on-site investigation. Therefore, this study a case study by establishing a methodology to determine effectiveness video images with a drone, extracting data using a program, and comparing vehicle driving speeds before and after speed reduction facilities. Vehicle speed surveys using drones are much safer than observational surveys conducted on highways and have the advantage of tracking speed changes along the vehicle, it is expected that they will be used for various traffic surveys in the future.

Changes in the Teaching Expertise of Teachers Participating in an In-School Professional Learning Community for Elementary Science Instructional Research (초등과학 수업 연구를 위한 학교 안 전문적 학습공동체 참여 교사들의 수업 전문성 변화 양상)

  • Kim, Eun Seo;Lee, Sun-Kyung
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.1
    • /
    • pp.185-200
    • /
    • 2024
  • This study explored the changes in the elementary science teaching expertise of teachers who participated in an in-school professional learning community for elementary science instructional research. Six elementary school teachers from grades 4, 5, and 6 at an 18-class S elementary school in a medium-sized city in Chungcheongbuk-do conducted collaborative instructional research on elementary science lessons as part of an in-school professional learning community, which was held 26 times over 7 months in 2020. During the professional learning community, video and audio recordings of the activities, research lessons, course materials, and professional learning community reflection activities were collected for analysis. The collected data were analyzed using qualitative research methods; data processing, reading, note-taking, description, classification, interpretation, reporting, and visualization; and the instructional professionalism elements were extracted based on the instructional professionalism framework. In the early professional learning community activity stages, the participating teachers first discussed their teaching perspectives, their experiences, and their goals for teaching science, which resulted in a selection of research questions. The teachers then collaboratively designed and implemented research lessons for each grade level, after which lesson reflections were conducted. The teachers' abilities to engage in qualitative reflection on the research questions improved after each reflection iteration. It was found that this professional learning community collaborative lesson study experience positively contributed to teaching expertise development. Based on the study findings, the implications for using professional learning communities to improve elementary teachers' science teaching expertise are given.

Comparative Evaluation of Impervious Ratio between KNU and HKU Campus Using Google Earth (Google Earth를 이용한 경북대와 홍콩대 캠퍼스의 불투수율 비교평가)

  • Um, Jung-Sup
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.3
    • /
    • pp.421-433
    • /
    • 2009
  • The impervious ratio was frequently employed as a fundamental attribute will be used as a proxy of the total environmental burden in the urban area since it may contribute as much or more on a cumulative basis to the overall environmental condition. This research proposes a comparative evaluation framework in a more objective and Quantitative way for an impervious ratio in the university campus, using the Google Earth. Two university campuses (Kyungpook National University: KNU, Hong Kong University: HKUJ were selected as survey objectives in order to evaluate the potential of Google Earth in monitoring impervious conditions in the campus. The 61cm resolution of Quickbird data combined with digital map realistically identified the major type of impervious surface such as road, building and parking lots in the study area by large scale spatial precision. The impervious zones with persistently high road density and parking space were specifically identified over the KNU campus while the HKC campus was intensively covered by tree, resulting in almost twice (31%). as compared to KNU (18.4%), The methods of characterizing impervious surface used in this study are easily replicable using data that are primarily publicly available, and therefore the collection of impervious coverage data via Google Earth is, therefore, proposed as a practical alternative.

  • PDF

Effect of Chlorine Treatment on the Rheological Properties of Soft Wheat Flour (박력분의 리올로지 특성에 대한 염소처리의 영향)

  • Han, Myung-Kyoo;Chang, Young-Sang;Shin, Hyo-Sun
    • Applied Biological Chemistry
    • /
    • v.32 no.4
    • /
    • pp.327-331
    • /
    • 1989
  • In this study the Theological properties between C1-treated soft wheat flour and untreated soft wheat flour was determined. Chlorine treatment lowered pH of the flour in a linear fashion. Water absorption and dough stability was high in proportion to the increase of treatment level but mechanical tolerance index was reduced by each increment of chlorine. The valorimeter value did not exhibit reproducible trend on treatment of chlorine. In general, resistance(BU), resistance to extension and maximum viscosity(BU) were highest in control group; lowest in 1 oz./cwt. flour and tended to rise in 2 oz./cwt. flour when it fermented in chamber for 90 min and 135 min. The maximum viscosity was highest (1,160BU) in 4 oz./cwt. flour and temperature at maximum viscosity tended to rise gradually in proportion to the increase of treated level.

  • PDF

A study on the Characteristics of Urban Dryness in Busan (부산의 도시건조화 특성에 관한 연구)

  • Park, Myung-Hee;Lee, Joon-Soo;Suh, Young-Sang;Han, In-Seong;Lee, Hye-Hyun;Kim, Hae-Dong;Bae, Hun-Kyun
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1851-1862
    • /
    • 2014
  • It is well known that urban relative humidity has continuous decreasing trend owing to the influence of urbanization. The change of relative humidity is directly influenced by two factors, namely, temperature effect and water vapor effect in various urban effects. In this study, the temperature and the water vapor effects on the relative humidity change were analyzed by using monthly mean relative humidities for a long period(1961~2013) in Busan and Daegu. The major results obtained in this study can be summarized as follows. Firstly, the urban dryness was caused mainly by water vapor effect in summer. But, for the other seasons, the urban dryness is mainly due to the temperature effect. Secondly, the relative humidity in Busan is on the decrease until now. This phenomenon is similar to another Korean huge cities such as Seoul, Daejeon and Incheon.