• Title/Summary/Keyword: 영상관측

Search Result 1,390, Processing Time 0.032 seconds

Characteristics of Brightness Temperature of Geostationary Satellite on Lightning Events during Summer over South Korea (여름철 낙뢰 발생 시 정지궤도 위성의 휘도온도 특성)

  • Lee, Yun-Jeong;Suh, Myoung-Seok;Eom, Hyo-Sik;Seo, Eun-Kyoung
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.744-758
    • /
    • 2009
  • The characteristics of brightness temperature (BT) of infrared and water vapor channels from MTSAT-1R have been investigated using 12 persistent and frequent lightning cases selected from the summer lightnings of 2006-2008. The infrared (IR1, 10.3-11.3 ${\mu}M$) and water vapor (WV, 6.5-7.0 ${\mu}M$) channels from the MTSAT-1R and the lightning observation data from Korea Meteorological Administration are used. When there is no lightning, the BTs of the IR1 and WV channels show the largest frequency at around 290-295K and 245K, respectively. On the other hand, the BTs of two channels show the largest frequency at 215K caused by strong convection when there is lightning. As a result, the WV-IR1 difference (BTDWI) sharply increases from -50K to 0K. Although it depends on the evolution stage of thunderstorms, the lightning mainly occurs at the core of circular convection in the mesoscale convective complex (MCC), whereas the lightning occurs by concentrated line-shape in the squall line. A strong positive correlation exists between the lightning frequency and the BT in the MCC regardless of the BT, but only at the very cold BT in the squall line. In general, the characteristics of BT are well defined for the lightning occurring in the concentrated line, but they are not well defined in the MCC, especially during the decaying stage of MCC. When they are defined well, the lightning occurs when the BTs of IR1 and WV are lower than 215K, BTDWI is near -3 to 1K, and local standard deviation of IR1 decreases to around 1K.

Evaluating of the Effectiveness of RTK Surveying Performance Based on Low-cost Multi-Channel GNSS Positioning Modules (다채널 저가 GNSS 측위 모듈기반 RTK 측량의 효용성 평가)

  • Kim, Chi-Hun;Oh, Seong-Jong;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.53-65
    • /
    • 2022
  • According to the advancement of the GNSS satellite positioning system, the module of hardware and operation software reflecting accuracy and economical efficiency is implemented in the user sector including the multi-channel GNSS receiver, the multi-frequency external antenna and the mobile app (App) base public positioning analysis software etc., and the multichannel GNSS RTK positioning of the active configuration method (DIY, Do it yourself) is possible according to the purpose of user. Especially, as the infrastructure of multi-GNSS satellite is expanded and the potential of expansion of utilization according to various modules is highlighted, interest in the utilization of multi-channel low-cost GNSS receiver module is gradually increasing. The purpose of this study is to review the multi-channel low-cost GNSS receivers that are appearing in the mass market in various forms and to analyze the utilization plan of the "address information facility investigation project" of the Ministry of Public Administration and Security by constructing the multi-channel low-cost GNSS positioning module based RTK survey system (hereinafter referred to as "multi-channel GNSS RTK module positioning system"). For this purpose, we constructed a low-cost "multi-channel GNSS RTK module positioning system" by combining related modules such as U-blox's F9P chipset, antenna, Ntrip transmission of GNSS observation data and RTK positioning analysis app through smartphone. Kinematic positioning was performed for circular trajectories, and static positioning was performed for address information facilities. The results of comparative analysis with the Static positioning performance of the geodetic receivers were obtained with 5 fixed points in the experimental site, and the good static surveying performance was obtained with the standard deviation of average ±1.2cm. In addition, the results of the test point for the outline of the circular structure in the orthogonal image composed of the drone image analysis and the Kinematic positioning trajectory of the low cost RTK GNSS receiver showed that the trajectory was very close to the standard deviation of average ±2.5cm. Especially, as a result of applying it to address information facilities, it was possible to verify the utility of spatial information construction at low cost compared to expensive commercial geodetic receivers, so it is expected that various utilization of "multi-channel GNSS RTK module positioning system"

Performance Evaluation of Monitoring System for Sargassum horneri Using GOCI-II: Focusing on the Results of Removing False Detection in the Yellow Sea and East China Sea (GOCI-II 기반 괭생이모자반 모니터링 시스템 성능 평가: 황해 및 동중국해 해역 오탐지 제거 결과를 중심으로)

  • Han-bit Lee;Ju-Eun Kim;Moon-Seon Kim;Dong-Su Kim;Seung-Hwan Min;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1615-1633
    • /
    • 2023
  • Sargassum horneri is one of the floating algae in the sea, which breeds in large quantities in the Yellow Sea and East China Sea and then flows into the coast of Republic of Korea, causing various problems such as destroying the environment and damaging fish farms. In order to effectively prevent damage and preserve the coastal environment, the development of Sargassum horneri detection algorithms using satellite-based remote sensing technology has been actively developed. However, incorrect detection information causes an increase in the moving distance of ships collecting Sargassum horneri and confusion in the response of related local governments or institutions,so it is very important to minimize false detections when producing Sargassum horneri spatial information. This study applied technology to automatically remove false detection results using the GOCI-II-based Sargassum horneri detection algorithm of the National Ocean Satellite Center (NOSC) of the Korea Hydrographic and Oceanography Agency (KHOA). Based on the results of analyzing the causes of major false detection results, it includes a process of removing linear and sporadic false detections and green algae that occurs in large quantities along the coast of China in spring and summer by considering them as false detections. The technology to automatically remove false detection was applied to the dates when Sargassum horneri occurred from February 24 to June 25, 2022. Visual assessment results were generated using mid-resolution satellite images, qualitative and quantitative evaluations were performed. Linear false detection results were completely removed, and most of the sporadic and green algae false detection results that affected the distribution were removed. Even after the automatic false detection removal process, it was possible to confirm the distribution area of Sargassum horneri compared to the visual assessment results, and the accuracy and precision calculated using the binary classification model averaged 97.73% and 95.4%, respectively. Recall value was very low at 29.03%, which is presumed to be due to the effect of Sargassum horneri movement due to the observation time discrepancy between GOCI-II and mid-resolution satellite images, differences in spatial resolution, location deviation by orthocorrection, and cloud masking. The results of this study's removal of false detections of Sargassum horneri can determine the spatial distribution status in near real-time, but there are limitations in accurately estimating biomass. Therefore, continuous research on upgrading the Sargassum horneri monitoring system must be conducted to use it as data for establishing future Sargassum horneri response plans.

Development of a Real-Time Mobile GIS using the HBR-Tree (HBR-Tree를 이용한 실시간 모바일 GIS의 개발)

  • Lee, Ki-Yamg;Yun, Jae-Kwan;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.1 s.11
    • /
    • pp.73-85
    • /
    • 2004
  • Recently, as the growth of the wireless Internet, PDA and HPC, the focus of research and development related with GIS(Geographic Information System) has been changed to the Real-Time Mobile GIS to service LBS. To offer LBS efficiently, there must be the Real-Time GIS platform that can deal with dynamic status of moving objects and a location index which can deal with the characteristics of location data. Location data can use the same data type(e.g., point) of GIS, but the management of location data is very different. Therefore, in this paper, we studied the Real-Time Mobile GIS using the HBR-tree to manage mass of location data efficiently. The Real-Time Mobile GIS which is developed in this paper consists of the HBR-tree and the Real-Time GIS Platform HBR-tree. we proposed in this paper, is a combined index type of the R-tree and the spatial hash Although location data are updated frequently, update operations are done within the same hash table in the HBR-tree, so it costs less than other tree-based indexes Since the HBR-tree uses the same search mechanism of the R-tree, it is possible to search location data quickly. The Real-Time GIS platform consists of a Real-Time GIS engine that is extended from a main memory database system. a middleware which can transfer spatial, aspatial data to clients and receive location data from clients, and a mobile client which operates on the mobile devices. Especially, this paper described the performance evaluation conducted with practical tests if the HBR-tree and the Real-Time GIS engine respectively.

  • PDF

A study on the Standardization of Design Guidelines for Geographic Information Databases (지리정보 DB 설계 지침의 표준화 연구)

  • Lim, Duk-Sung;Moon, Sang-Ho;Si, Jong-Ik;Hong, Bong-Hee
    • Journal of Korea Spatial Information System Society
    • /
    • v.5 no.1 s.9
    • /
    • pp.49-63
    • /
    • 2003
  • Recently, two international standard organizations, ISO and OGC, have done the work of standardization for GIS. Current standardization work for providing interoperability among GIS DB focuses on the design of open interfaces. But, this work has not considered procedures and methods for designing GIS DB. Eventually, GIS DB has its own model. When we share the data by open interface among heterogeneous GIS DB, differences between models result in the loss of information. Our aim in this paper is to revise the design guidelines for geographic information databases in order to make consistent spatial data models, logical structures, and semantic structure of populated geographical databases. In details, we propose standard guidelines which convert ISO abstract schema into relation model, object-relation model, object-centered model, and geometry-centered model. Furthermore, we provide sample models for applying these guidelines in commercial GIS S/Ws. Building GIS DB based on design guidelines proposed in the paper has the following advantages: the interoperability among databases, the standardization of schema definitions, and the catalogue of GIS databases through.

  • PDF

Relationship Analysis between Lineaments and Epicenters using Hotspot Analysis: The Case of Geochang Region, South Korea (핫스팟 분석을 통한 거창지역의 선구조선과 진앙의 상관관계 분석)

  • Jo, Hyun-Woo;Chi, Kwang-Hoon;Cha, Sungeun;Kim, Eunji;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.469-480
    • /
    • 2017
  • This study aims to understand the relationship between lineaments and epicenters in Geochang region, Gyungsangnam-do, South Korea. An instrumental observation of earthquakes has been started by Korea Meteorological Administration (KMA) since 1978 and there were 6 earthquakes with magnitude ranging 2 to 2.5 in Geochang region from 1978 to 2016. Lineaments were extracted from LANDSAT 8 satellite image and shaded relief map displayed in 3-dimension using Digital Elevation Model (DEM). Then, lineament density was statistically examined by hotspot analysis. Hexagonal grids were generated to perform the analysis because hexagonal pattern expresses lineaments with less discontinuity than square girds, and the size of the grid was selected to minimize a variance of lineament density. Since hotspot analysis measures the extent of clustering with Z score, Z scores computed with lineaments' frequency ($L_f$), length ($L_d$), and intersection ($L_t$) were used to find lineament clusters in the density map. Furthermore, the Z scores were extracted from the epicenters and examined to see the relevance of each density elements to epicenters. As a result, 15 among 18 densities,recorded as 3 elements in 6 epicenters, were higher than 1.65 which is 95% of the standard normal distribution. This indicates that epicenters coincide with high density area. Especially, $L_f$ and $L_t$ had a significant relationship with epicenter, being located in upper 95% of the standard normal distribution, except for one epicenter in $L_t$. This study can be used to identify potential seismic zones by improving the accuracy of expressing lineaments' spatial distribution and analyzing relationship between lineament density and epicenter. However, additional studies in wider study area with more epicenters are recommended to promote the results.

Comparative Analysis of Long-term Water Quality Data Monitored in Andong and Imha Reservoirs (안동호와 임하호에서 관측한 장기 수질자료의 비교 분석)

  • Park, Sun-Jae;Choi, Seong-Mo;Park, Jong-Seok;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.21-31
    • /
    • 2006
  • The objectives of this study were to analyze trends of temporal water quality and trophic state in Andong and Imha reservoirs using chemical dataset during 1993 ${\sim}$ 2004, obtained from the Ministry of Environment, Korea. According to long-term limnological analyses, Suspended solids (SS) in Imha Reservoir were 2 ${\sim}$ 8 fold2 greater, than those in SS of Andong Reservoir, and the high solids increased total phosphorus (TP) and biological oxygen demand ($BOD_5$) and decreased the transparency, measured as Secchi depth (SD). Chlorophyll-a (CHL-a) increased little or decreased slightly in the both reservoirs during the high solids, resulting in reduced yields of CHL-a : TP ratios. The deviation analysis of Trophic State Index (TSI) in Imha Reservoir showed that about 70% of TSI (CHL-a)-TSI (SD) and TSI (CHL-a)-TSI(TP) values were less than zero and the lowest values were-60, indicating that influence of inorganic solids (or non-volatile solids) on phytoplankton growth was evident in Imha Reservoir and the impact was greater than that of Andong Reservoir. Inorganic solids in Imha Reservoir resulted in light limitation on phytoplankton growth and thus contributed variations in the relations among three parameters of trophic state index. Especially, seasonal data analysis of nutrients in both reservoirs showed that during the postmonsoon, mean TP concentration was Imha Reservoir greater in than that in Andong Reservoir. The higher TP concentrantion was mainly attributed to increases of inorganic solids from soil erosions and nonpoint source inputs within the watershed. The high inorganic turbidity in Imha Reservoir should be reduced for the conservation of water quality for, especially a tap water supply.

Using Spatial Data and Crop Growth Modeling to Predict Performance of South Korean Rice Varieties Grown in Western Coastal Plains in North Korea (공간정보와 생육모의에 의한 남한 벼 품종의 북한 서부지대 적응성 예측)

  • 김영호;김희동;한상욱;최재연;구자민;정유란;김재영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.224-236
    • /
    • 2002
  • A long-term growth simulation was performed at 496 land units in the western coastal plains (WCP) of North Korea to test the potential adaptability of each land unit for growing South Korean rice cultivars. The land units for rice cultivation (CZU), each of them represented by a geographically referenced 5 by 5 km grid tell, were identified by analyzing satellite remote sensing data. Surfaces of monthly climatic normals for daily maximum and minimum temperature, precipitation number of rain days and solar radiation were generated at a 1 by 1 km interval by spatial statistical methods using observed data at 51 synoptic weather stations in North and South Korea during 1981-2000. Grid cells felling within a same CZU and, at the same time, corresponding to the satellite data- identified rice growing pixels were extracted and aggregated to make a spatially explicit climatic normals relevant to the rice growing area of the CZU. Daily weather dataset for 30 years was randomly generated from the monthly climatic normals of each CZU. Growth and development parameters of CERES-rice model suitable for 11 major South Korean cultivars were derived from long-term field observations. Eight treatments comprised of 2 transplanting dates $\times$ 2 cropping systems $\times$ 2 irrigation methods were assigned to each cultivar. Each treatment was simulated with the randomly generated 30 years' daily weather data (from planting to physiological maturity) for 496 land units in WCP to simulate the growth and yield responses to the interannual climate variation. The same model was run with the input data from the 3 major crop experiment stations in South Korea to obtain a 30 year normal performance of each cultivar, which was used as a "reference" for comparison. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to evaluate the suitability of each land unit for growing a specific South Korean cultivar. The results may be utilized as decision aids for agrotechnology transfer to North Korea, for example, germplasm evaluation, resource allocation and crop calendar preparation.

Detection of Irrigation Timing and the Mapping of Paddy Cover in Korea Using MODIS Images Data (MODIS 영상자료를 이용한 관개시기 탐지와 논 피복지도 제작)

  • Jeong, Seung-Taek;Jang, Keun-Chang;Hong, Seok-Yeong;Kang, Sin-Kyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.69-78
    • /
    • 2011
  • Rice is one of the world's staple foods. Paddy rice fields have unique biophysical characteristics that the rice is grown on flooded soils unlike other crops. Information on the spatial distribution of paddy fields and the timing of irrigation are of importance to determine hydrological balance and efficiency of water resource management. In this paper, we detected the timing of irrigation and spatial distribution of paddy fields using the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the NASA EOS Aqua satellite. The timing of irrigation was detected by the combined use of MODIS-based vegetation index and Land Surface Water Index (LSWI). The detected timing of irrigation showed good agreement with field observations from two flux sites in Korea and Japan. Based on the irrigation detection, a land cover map of paddy fields was generated with subsidiary information on seasonal patterns of MODIS enhanced vegetation index (EVI). When the MODISbased paddy field map was compared with a land cover map from the Ministry of Environment, Korea, it overestimated the regions with large paddies but underestimated those with small and fragmented paddies. Potential reasons for such spatial discrepancies may be attributed to coarse pixel resolution (500 m) of MODIS images, uncertainty in parameterization of threshold values for discarding forest and water pixels, and the application of LSWI threshold value developed for paddy fields in China. Nevertheless, this study showed that an improved utilization of seasonal patterns of MODIS vegetation and water-related indices could be applied in water resource management and enhanced estimation of evapotranspiration from paddy fields.

Empirical Forecast of Corotating Interacting Regions and Geomagnetic Storms Based on Coronal Hole Information (코로나 홀을 이용한 CIR과 지자기 폭풍의 경험적 예보 연구)

  • Lee, Ji-Hye;Moon, Yong-Jae;Choi, Yun-Hee;Yoo, Kye-Hwa
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.305-316
    • /
    • 2009
  • In this study, we suggest an empirical forecast of CIR (Corotating Interaction Regions) and geomagnetic storm based on the information of coronal holes (CH). For this we used CH data obtained from He I $10830{\AA}$ maps at National Solar Observatory-Kitt Peak from January 1996 to November 2003 and the CIR and storm data that Choi et al. (2009) identified. Considering the relationship among coronal holes, CIRs, and geomagnetic storms (Choi et al. 2009), we propose the criteria for geoeffective coronal holes; the center of CH is located between $N40^{\circ}$ and $S40^{\circ}$ and between $E40^{\circ}$ and $W20^{\circ}$, and its area in percentage of solar hemispheric area is larger than the following areas: (1) case 1: 0.36%, (2) case 2: 0.66%, (3) case 3: 0.36% for 1996-2000, and 0.66% for 2001-2003. Then we present contingency tables between prediction and observation for three cases and their dependence on solar cycle phase. From the contingency tables, we determined several statistical parameters for forecast evaluation such as PODy (the probability of detection yes), FAR (the false alarm ratio), Bias (the ratio of "yes" predictions to "yes" observations) and CSI (critical success index). Considering the importance of PODy and CSI, we found that the best criterion is case 3; CH-CIR: PODy=0.77, FAR=0.66, Bias=2.28, CSI=0.30. CH-storm: PODy=0.81, FAR=0.84, Bias=5.00, CSI=0.16. It is also found that the parameters after the solar maximum are much better than those before the solar maximum. Our results show that the forecasting of CIR based on coronal hole information is meaningful but the forecast of goemagnetic storm is challenging.