• Title/Summary/Keyword: 영상관측

Search Result 1,394, Processing Time 0.042 seconds

Derivation of Typical Meteorological Year of Daejeon from Satellite-Based Solar Irradiance (위성영상 기반 일사량을 활용한 대전지역 표준기상년 데이터 생산)

  • Kim, Chang Ki;Kim, Shin-Young;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.27-36
    • /
    • 2018
  • Typical Meteorological Year Dataset is necessary for the renewable energy feasibility study. Since National Renewable Energy Laboratory has been built Typical Meteorological Year Dataset in 1978, gridded datasets taken from numerical weather prediction or satellite imagery are employed to produce Typical Meteorological Year Dataset. In general, Typical Meteorological Year Dataset is generated by using long-term in-situ observations. However, solar insolation is not usually measured at synoptic observing stations and therefore it is limited to build the Typical Meteorological Year Dataset with only in-situ observation. This study attempts to build the Typical Meteorological Year Dataset with satellite derived solar insolation as an alternative and then we evaluate the Typical Meteorological Year Dataset made by using satellite derived solar irradiance at Daejeon ground station. The solar irradiance is underestimated when satellite imagery is employed.

LeafNet: Plants Segmentation using CNN (LeafNet: 합성곱 신경망을 이용한 식물체 분할)

  • Jo, Jeong Won;Lee, Min Hye;Lee, Hong Ro;Chung, Yong Suk;Baek, Jeong Ho;Kim, Kyung Hwan;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • Plant phenomics is a technique for observing and analyzing morphological features in order to select plant varieties of excellent traits. The conventional methods is difficult to apply to the phenomics system. because the color threshold value must be manually changed according to the detection target. In this paper, we propose the convolution neural network (CNN) structure that can automatically segment plants from the background for the phenomics system. The LeafNet consists of nine convolution layers and a sigmoid activation function for determining the presence of plants. As a result of the learning using the LeafNet, we obtained a precision of 98.0% and a recall rate of 90.3% for the plant seedlings images. This confirms the applicability of the phenomics system.

Analysis of Clear Sky Index Defined by Various Ways Using Solar Resource Map Based on Chollian Satellite Imagery (천리안 위성 영상 기반 태양자원지도를 활용한 다양한 정의에서의 청천지수 특성 분석)

  • Kim, Chang Ki;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.47-57
    • /
    • 2019
  • Clear sky indices were estimated by various ways based on in-situ observation and satellite-derived solar irradiance. In principle, clear sky index defined by clear sky solar irradiance indicates the impacts of cloud on the incoming solar irradiance. However, clear sky index widely used in energy sciences is formulated by extraterrestrial irradiance, which implies the extinction of solar irradiance due to mainly aerosol, water vapor and clouds drops. This study examined the relative difference of clear sky indices and then major characteristics of clear sky irradiance when sky is clear are investigated. Clear sky is defined when clear sky index based on clear sky irradiance is higher than 0.9. In contrast, clear sky index defined by extraterrestrial irradiance is distributed between 0.4 and 0.8. When aerosol optical depth and air mass coefficient are relative larger, solar irradiance is lower due to enhanced extinction, which leads to the lower value of clear sky index defined by extraterrestrial irradiance.

Design and Implementation of CTM for SAR Payload (위성 SAR 탑재체용 파형발생수신모듈 설계 및 제작)

  • Kim, Dong-Sik;Kim, Hyun-Chul;Yu, Kyung-deok;Heo, John;Woo, Jae-Choon;Lee, Sang-Gyu;Lee, Hyeon-Cheol;Ryu, Sang-Burm
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.119-125
    • /
    • 2022
  • In this paper, we present design, implementation and test results of CTM (Chirp Transceiver Module) EM (Engineering Model) for C-Band SAR (Synthetic Aperture Radar) Payload. The CTM is designed to operate dual frequency scan method that simultaneously operate two frequencies in each 50MHz bandwidth to achieve 120Km swath with 10m resolution at about 500Km altitude. The CTM used radiation tolerant RTG4 FPGA for space environment, and implemented with the Parallel DDS (PDDS) method which uses a small memory capacity compared to the memory-map method. Test results show high purity chirp signal generation and excellent IRF performance from received chirp signal after direct digital conversion.

Fluvial mixing characteristics in large scale confluence between Nam and Nakdong River (남강-낙동강 합류부 대하천 규모 수리학적 혼합특성 연구)

  • Choi, Suin;Kim, Dongsu;Son, Geunsoo;Kim, Youngdo;Lyu, Siwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.264-264
    • /
    • 2022
  • 하천의 합류부는 두 개 이상의 하천이 하나로 합쳐지는 구간으로 서로 다른 특성으로 인해 급격한 흐름의 변화와 수리학적 지형변화가 발생하는 구간이다. 하천의 합류부에서는 유체의 물리화학적인 특성과 흐름 구조의 변화가 발생할 수 있다. 흐름 구조의 변화로 인한 유사 이송으로 세굴과 같은 지형적인 변화가 발생할 수 있다. 합류부의 혼합을 이해하기 위해서는 본류와 지류의 다양한 유입조건에 따른 공간적인 패턴을 분석하는 것이 중요하다. 그러나, 대부분의 합류부 연구들은 실측에 기반한 공간적인 패턴 분석의 어려움으로 인해 실내실험 또는 수치모형에 의존하여 연구가 수행되어, 실측자료에 기반한 공간적인 수체혼합의 분석은 매우 제한적이었다. 따라서, 본 연구에서는 하천 합류부의 혼합 현상을 규명하는 인자로 흐름 방향 유속, 2차류와 수심 등 기본적인 수리학적 인자들 외에 연직, 수평 방향으로 측정한 수질 자료와 드론 영상을 활용하여 합류부의 혼합 특성을 해석하고자 하였다. 수질 자료 중 하천의 혼합을 가장 잘 확인할 수 있는 인자로써 전기전도도와 온도를 활용하였다. SonTek ADCP를 이동식으로 횡단하여 측정해 흐름 방향 유속과 2차류, 수심을 확인하였다. ADCP를 운용함과 동시에 YSI의 수질센서를 활용하여 연직, 수평 방향으로의 전기전도도와 온도의 분포를 확인하였다. 또한, 합류부의 2차원 공간적인 분포를 확인하기 위해 드론 영상을 촬영하였다. ADCP, YSI, 드론의 계측자료는 한국의 낙동강과 남강 합류부에서 측정되었고, 분석 결과 계측장비 간의 경향성이 일치하였다. 또한, 이전에 진행된 해외의 합류부 연구 결과와 유사한 결과가 관측되었으나, 일부 부분에서는 다른 결과를 보였다.

  • PDF

Prediction of CDOM absorption coefficient using Oversampling technique and Machine Learning in upstream reach of Baekje weir (백제보 상류하천구간의 Oversampling technique과 Machine Learning을 활용한 CDOM 흡수계수 예측)

  • Kim, Jinuk;Jang, Wonjin;Kim, Jinhwi;Park, Yongeun;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.46-46
    • /
    • 2022
  • 유기물의 복잡한 혼합물인 CDOM(Colored or Chromophoric Dissolved Organic Matter)은 하천 내 BOD(Biological Oxygen Demand), COD(Chemical Oxygen Demand) 및 유기 오염물질과 상당한 관련이 있다. CDOM은 가시광선 영역에서 빛을 흡수하는 성질을 가지고 있으며, 최근 원격감지 기술로 CDOM을 모니터링하기 위한 연구가 진행되고 있다. 본 연구에서는 백제보 상류 23km 구간에서 3년(2016~2018) 중 13일의 초분광영상을 활용하여 머신러닝 기반 CDOM을 추정 알고리즘을 개발하고자 한다. 초분광영상은 400~970 nm의 범위의 4 nm 간격 127개 대역의 분광해상도와 2 m의 공간해상도를 가진 항공기 탑재 AsiaFENIX 초분광 센서를 통해 수집하였으며 CDOM은 Millipore polycarbonate filter (𝚽47, 0.2 ㎛)에서 여과된 CDOM 샘플 자료를 200~800 nm의 흡수계수 스펙트럼으로 추출하여 사용하였다. CDOM 값은 전체기간 동안 2.0~11.0 m-1의 값 분포를 보였으며 5 m-1이상의 고농도 구간 자료개수가 전체 153개 샘플자료 중 21개로 불균형하다. 따라서 ADASYN(Adaptive Synthesis Sampling Approach)의 oversampling 방법으로 생성된 합성 데이터를 사용하여 원본 데이터의 소수계층 데이터 불균형을 해결하고 모델 예측 성능을 개선하고자 하였다. 생성된 합성 데이터를 입력변수로 하여 ANN(Artificial Neural Netowk)을 활용한 CDOM 예측 알고리즘을 구축하였다. ADASYN 기법을 통한 합성 데이터는 관측된 데이터의 불균형을 해결하여 기계학습 모델의 CDOM 탐지 성능을 향상시킬 수 있으며, 저수지 내 유기 오염물질 관리를 위한 설계를 지원하는데 사용할 수 있을 것으로 판단된다.

  • PDF

Analysis of Respiratory Motion Artifacts in PET Imaging Using Respiratory Gated PET Combined with 4D-CT (4D-CT와 결합한 호흡게이트 PET을 이용한 PET영상의 호흡 인공산물 분석)

  • Cho, Byung-Chul;Park, Sung-Ho;Park, Hee-Chul;Bae, Hoon-Sik;Hwang, Hee-Sung;Shin, Hee-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2005
  • Purpose: Reduction of respiratory motion artifacts in PET images was studied using respiratory-gated PET (RGPET) with moving phantom. Especially a method of generating simulated helical CT images from 4D-CT datasets was developed and applied to a respiratory specific RGPET images for more accurate attenuation correction. Materials and Methods: Using a motion phantom with periodicity of 6 seconds and linear motion amplitude of 26 mm, PET/CT (Discovery ST: GEMS) scans with and without respiratory gating were obtained for one syringe and two vials with each volume of 3, 10, and 30 ml respectively. RPM (Real-Time Position Management, Varian) was used for tracking motion during PET/CT scanning. Ten datasets of RGPET and 4D-CT corresponding to every 10% phase intervals were acquired. from the positions, sizes, and uptake values of each subject on the resultant phase specific PET and CT datasets, the correlations between motion artifacts in PET and CT images and the size of motion relative to the size of subject were analyzed. Results: The center positions of three vials in RGPET and 4D-CT agree well with the actual position within the estimated error. However, volumes of subjects in non-gated PET images increase proportional to relative motion size and were overestimated as much as 250% when the motion amplitude was increased two times larger than the size of the subject. On the contrary, the corresponding maximal uptake value was reduced to about 50%. Conclusion: RGPET is demonstrated to remove respiratory motion artifacts in PET imaging, and moreover, more precise image fusion and more accurate attenuation correction is possible by combining with 4D-CT.

Improvement of 2-pass DInSAR-based DEM Generation Method from TanDEM-X bistatic SAR Images (TanDEM-X bistatic SAR 영상의 2-pass 위성영상레이더 차분간섭기법 기반 수치표고모델 생성 방법 개선)

  • Chae, Sung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.847-860
    • /
    • 2020
  • The 2-pass DInSAR (Differential Interferometric SAR) processing steps for DEM generation consist of the co-registration of SAR image pair, interferogram generation, phase unwrapping, calculation of DEM errors, and geocoding, etc. It requires complicated steps, and the accuracy of data processing at each step affects the performance of the finally generated DEM. In this study, we developed an improved method for enhancing the performance of the DEM generation method based on the 2-pass DInSAR technique of TanDEM-X bistatic SAR images was developed. The developed DEM generation method is a method that can significantly reduce both the DEM error in the unwrapped phase image and that may occur during geocoding step. The performance analysis of the developed algorithm was performed by comparing the vertical accuracy (Root Mean Square Error, RMSE) between the existing method and the newly proposed method using the ground control point (GCP) generated from GPS survey. The vertical accuracy of the DInSAR-based DEM generated without correction for the unwrapped phase error and geocoding error is 39.617 m. However, the vertical accuracy of the DEM generated through the proposed method is 2.346 m. It was confirmed that the DEM accuracy was improved through the proposed correction method. Through the proposed 2-pass DInSAR-based DEM generation method, the SRTM DEM error observed by DInSAR was compensated for the SRTM 30 m DEM (vertical accuracy 5.567 m) used as a reference. Through this, it was possible to finally create a DEM with improved spatial resolution of about 5 times and vertical accuracy of about 2.4 times. In addition, the spatial resolution of the DEM generated through the proposed method was matched with the SRTM 30 m DEM and the TanDEM-X 90m DEM, and the vertical accuracy was compared. As a result, it was confirmed that the vertical accuracy was improved by about 1.7 and 1.6 times, respectively, and more accurate DEM generation was possible with the proposed method. If the method derived in this study is used to continuously update the DEM for regions with frequent morphological changes, it will be possible to update the DEM effectively in a short time at low cost.

Extraction of Water Body Area using Micro Satellite SAR: A Case Study of the Daecheng Dam of South korea (초소형 SAR 위성을 활용한 수체면적 추출: 대청댐 유역 대상)

  • PARK, Jongsoo;KANG, Ki-Mook;HWANG, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.41-54
    • /
    • 2021
  • It is very essential to estimate the water body area using remote exploration for water resource management, analysis and prediction of water disaster damage. Hydrophysical detection using satellites has been mainly performed on large satellites equipped with optical and SAR sensors. However, due to the long repeat cycle, there is a limitation that timely utilization is impossible in the event of a disaster/disaster. With the recent active development of Micro satellites, it has served as an opportunity to overcome the limitations of time resolution centered on existing large satellites. The Micro satellites currently in active operation are ICEYE in Finland and Capella satellites in the United States, and are operated in the form of clusters for earth observation purposes. Due to clustering operation, it has a short revisit cycle and high resolution and has the advantage of being able to observe regardless of weather or day and night with the SAR sensor mounted. In this study, the operation status and characteristics of micro satellites were described, and the water area estimation technology optimized for micro SAR satellite images was applied to the Daecheong Dam basin on the Korean Peninsula. In addition, accuracy verification was performed based on the reference value of the water generated from the optical satellite Sentinel-2 satellite as a reference. In the case of the Capella satellite, the smallest difference in area was shown, and it was confirmed that all three images showed high correlation. Through the results of this study, it was confirmed that despite the low NESZ of Micro satellites, it is possible to estimate the water area, and it is believed that the limitations of water resource/water disaster monitoring using existing large SAR satellites can be overcome.

Seasonal and Yearly Variations of Atmospheric Extinction Coefficient at Campus Station of Chungbuk National University Observatory from 2005 to 2007 (충북대학교 천문대 교내관측소에서 측정된 2005년부터 2007년까지의 대기소광계수의 계절별, 년도별 변화)

  • Kim, Chun-Hwey;Cha, Sang-Mok;Choi, Young-Jae;Song, Mi-Hwa;Park, Jang-Ho;Won, Jang-Hee;Yim, Jin-Sun;Cho, Myung-Shin;Park, Eun-Mi;Jeong, Jang-Hae
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.101-112
    • /
    • 2008
  • Systematic CCD observations of times of minimum lights for eclipsing binaries has been carried out from 2002 to 2007 at Campus Station of Chungbuk National University Observatory which is located in Cheongju city, Korea. As a by-product of our observations, photometric data for stars in CCD images taken from 2005 to 2007 were used to determine 1st order atmospheric extinction coefficient (hereafter AEC) and seasonal and yearly variations of the AECs were studied. Total nights used for determination of AECs were 57 days in 2005, 51 days in 2006, and 63 days in 2007. As a result the annual mean value of the AECs per air mass is calculated as $0.^m34{\pm}0.^m18$ for 2005, $0.^m38{\pm}0.^m19$ for 2006, and $0.^m45{\pm}0.^m20$ for 2007. These values show that the AECs and their standard deviations are two and four times, respectively, larger than those of normal observatories which are not located near large cities. Annual comparison between concentration of atmospheric fine dust and coefficient of atmospheric extinction show strong correlation between two quantities of which time variations show similar patterns. The AECs for the east sky show larger than those for the west sky. It can be easily understood by the reasonable possibility that air pollutants remain more in the east sky than in the west because the east area of Cheongju city has been more developed than the west one. In conclusion the atmospheric extinction of the night sky of Cheongju city has an annual trend of increase of $0.^m06\;airrnass^{-1}\; year^{-1}$ implying that it may take only about 13 years for Cheongju city to have 2 times brighter night sky than the present one. Our study highlights that variations of AEC can be used as an important indicator of air pollution to monitor night skies.