• Title/Summary/Keyword: 영농형 태양광 발전

Search Result 26, Processing Time 0.021 seconds

Preliminary Experiment of the Change of Insolation under Solar Panel Mimic Shading Net (영농형 태양광 하부의 일사량 변화 분석을 위한 모의 차광 관측 실험)

  • Yoon, Changyong;Choi, Seonwoong;An, Kyu-Nam;Ryu, Jae-Hyun;Jeong, Hoejeong;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.358-365
    • /
    • 2019
  • An agrivoltaic systems (AVS) is mixed systems associating photovoltaic panels (PVPs) and crop cultivation at the same time on the given land area. It is receiving attention to improve rural economy. However, it is likely that, the crop yield should be decreased due to the reduced absorption of solar radiation by leaves. Thus, before popularizing the AVS, it is necessary to comprehend the degree of shading by PVPs in AVS. In this study, the change of radiation condition under AVS mimic shading net was investigated. The minimum and maximum of difference of photosynthetically active radiation (PAR) between under and outside shading net were 3.03 mol/㎡/day on a cloudy day and 17.08 mol/㎡/day on a sunny day. This difference decreased when the ratio of diffuse irradiance to global irradiance increased. Such a shading effect resulted in the increase of rice height and decrease of rice tillering.

Change of Growth and Yield Characters in Rice at Different Transplanting Densities under Agrivoltaics (영농형 태양광 발전 시스템 하부 벼 재배 시 재식밀도별 생육 및 수량변화)

  • Woon-Ha Hwang;Min-Ji Lee;Jae-Hyeok Jeong;Hoe-Jung Jeong;Wan-Gue Sang;Seong-Yul Jang;Dong-Won Kwon;Woo-Jin Im;Heok-Jin Park;Ji-Hyen Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.2
    • /
    • pp.88-96
    • /
    • 2024
  • Recently, interest in renewable energy development has been increasing to promote carbon-neutral policies. Agrivoltaic is a solar power generation facility with the potential to aid in meeting carbon-neutral policies. It has the advantage of generating electricity while farming takes place, but it also has the disadvantage of reducing crop yield and cultivation safety. We analyzed the rice yield, quality, and stem growth characteristics according to different transplanting densities under agrivoltaics. Under agrivoltaics, the number of rice panicles was reduced by the shading effect, but the reduction was lower under 60 hills than under 80 and 100 hills. Brown rice perfect ratio was increased under 60 hills under agrivoltaics. Brown rice yield did not differ significantly between 60 and 80 hills under agrivoltaics. However, stem dry weight by unit(mg/cm) in each internode showed highest under 60 hills compared to 80 and 100 hills under agrivoltaics. Therefore, 60 hill density was considered appropriate to ensure cultivation safety and yield when cultivated rice under agrivoltaics.

Grapevine Growth and Berry Development under the Agrivoltaic Solar Panels in the Vineyards (영농형 태양광 시설 설치에 따른 포도나무 생육 및 과실 특성 변화 비교)

  • Ahn, Soon Young;Lee, Dan Bi;Lee, Hae In;Myint, Zar Le;Min, Sang Yoon;Kim, Bo Myung;Oh, Wook;Jung, Jae Hak;Yun, Hae Keun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.356-365
    • /
    • 2022
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. The agrivoltaic systems are expected to reduce the incident solar radiation, the consequent surface cooling effect, and evapotranspiration, and bring additional income to farms through solar power generation by combining crops with solar photovoltaics. In this study, to evaluate if agrivoltaic systems are suitable for viticulture, we investigated the microclimatic change, the growth of vines and the characteristics of grape grown under solar panels set by planting lines compared with ones in open vineyards. There was high reduction of wind speed during over-wintering season, and low soil temperature under solar panel compared to those in the open field. There was not significant difference in total carbohydrates and bud burst in bearing mother branches between plots. Despite high content of chlorophyll in vines grown under panels, there is no significant difference in shoot growth of vines, berry weight, cluster weight, total soluble solid content and acidity of berries, and anthocyanin content of berry skins in harvested grapes in vineyards under panels and open vineyards. It was observed that harvesting season was delayed by 7-10 days due to late skin coloration in grapes grown in vineyards under panels compared to ones grown in open vineyards. The results from this study would be used as data required in development of viticulture system under panel in the future and further study for evaluating the influence of agrivoltaic system on production of crops including grapes.

Evaluating Cultivation Environment and Rice Productivity under Different Types of Agrivoltaics (유형이 다른 영농형 태양광발전시설 하부 재배 환경 및 벼 생산성 평가)

  • Ban, Ho-Young;Jeong, Jae-Hyeok;Hwang, Woon-Ha;Lee, Hyeon-Seok;Yang, Seo-Yeong;Choi, Myoung-Goo;Lee, Chung-Keun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.258-267
    • /
    • 2020
  • The agrivoltaic can produce electricity and grow crops on fields at the same time. It is necessary to analyze the cultivation environment and evaluate the crop productivity under agrivoltaic because the shading point changes according to structure of agrivoltaic and sun's position. Two types of "fixing" and "tracing" agrivoltaic were installed, and a rice cultivation experiment was conducted in the fields under each agrivoltaic and without shading (control). "Hyunpoombyeo" was transplanted on June 7, 2019, and grown with fertilization of 9.0-4.5-5.7 kg/10a (N-P-K). Fifteen weather stations were installed under each agrivoltaic to measure solar radiation and temperature, and yield and yield-related elements were investigated by points. The accumulated solar radiation during the rice growing season in fixing was no much difference between points, and that in tracing was much difference between points. However, the average solar radiations of two agrivoltaics were similar. The mean temperature, yield, and yield-related elements showed a significant difference for the shading rate, and decreased with increasing the shading rate except ripening grain rate and 1000 grain weight of fixing agrivoltaic. In the relationship between shading rate and yield, fixing and tracing were fitted to a logistic equation and a simple linear equation, respectively, and showed a high correlation (tracing: R2 = 0.62, fixing: R2 = 0.73). The shading rate variation by point for two types was large despite similar yield variation. Thus, it needs to be more closely examined the relationship of the shading rate for a specific period rather than the shading rate during the whole growing season.

Study on Forage Production under Agrivoltaic System (영농형 태양광 시스템 하부를 활용한 조사료 생육 연구)

  • Nam, Cheol Hwan;Park, Man Ho;Yun, An A;Ji, Hee Jung;Choi, Bo ram;Sun, Sang Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • In the winter forage study, Italian ryegrass(IRG) and barley were selected. In 2018, the dry matter yield of IRG was 16,915kg per ha under the Agrivoltaic System; this was a little more than 16,750kg per ha of outdoors. On the contrary, the dry matter yield of barley was slightly less under the Agrivoltaic System than that of outdoors. In 2019, the dry matter yield under the Agrivoltaic System was 12,062kg per ha for IRG and 12,195kg per ha for the barley; this was 5.4% and 11.5% less than that of outdoors, respectively. In the summer forage study, corn and sorghum×sudangrass were selected. In 2019, the dry matter yield of corn under the Agrivoltaic System was 13,133kg per ha which was 17% less than that of outdoors. The dry matter yield of sorghum×sudangrass was 12,450kg per ha, which was 82.5% of that of outdoors. In 2020, the dry matter yield of corn under the Agrivoltaic System was 8,033kg per ha which was 7.9% less than that of outdoors. The dry matter yield of sorghum×sudangrass was 5,651kg per ha, which was 11.4% less than that of outdoors.