• Title/Summary/Keyword: 영구음영지역

Search Result 7, Processing Time 0.02 seconds

Experiment on Low Light Image Enhancement and Feature Extraction Methods for Rover Exploration in Lunar Permanently Shadowed Region (달 영구음영지역에서 로버 탐사를 위한 저조도 영상강화 및 영상 특징점 추출 성능 실험)

  • Park, Jae-Min;Hong, Sungchul;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.741-749
    • /
    • 2022
  • Major space agencies are planning for the rover-based lunar exploration since water-ice was detected in permanently shadowed regions (PSR). Although sunlight does not directly reach the PSRs, it is expected that reflected sunlight sustains a certain level of low-light environment. In this research, the indoor testbed was made to simulate the PSR's lighting and topological conditions, to which low light enhancement methods (CLAHE, Dehaze, RetinexNet, GLADNet) were applied to restore image brightness and color as well as to investigate their influences on the performance of feature extraction and matching methods (SIFT, SURF, ORB, AKAZE). The experiment results show that GLADNet and Dehaze images in order significantly improve image brightness and color. However, the performance of the feature extraction and matching methods were improved by Dehaze and GLADNet images in order, especially for ORB and AKAZE. Thus, in the lunar exploration, Dehaze is appropriate for building 3D topographic map whereas GLADNet is adequate for geological investigation.

A Study on the Lunar Ground Temperature Profile for Investigation of Possible Condition of the Ice Layer Existence in Sub-surface of the Moon (달 지하 얼음 층 존재 가능조건 검토를 위한 달 지반 온도 프로파일 산정 연구)

  • Go, Gyu-Hyun;Lee, Jangguen;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.801-809
    • /
    • 2019
  • NASA's lunar polar exploration mission in 2009 confirmed the presence of ice-layer in the permanently shadowed regions (PSR) of the moon. Since then, studies have been actively conducted to evaluate the ground characteristics for exploring the ice-layer in the polar regions of the Moon. In this study, transient heat transfer analysis for the lunar ground was conducted to predict the ground's temperature that varies with the time and location. As a result of the numerical analysis, it was confirmed that the temperature under the lunar ground converged to below the ice sublimation reference temperature (≒112 K) at above 86° latitude. This model enabled us to identify the regions where there is a high possibility of ice being buried. Besides, we found that the ice-layer in the shallow region, where the temperature deviation is significant, makes ground temperature distribution heterogeneous. Lastly, this study suggested the maximum allowable frictional heat of a drill bit that can preserve the phase of buried ice.

Comparative Analysis of Growth and Development of Paddy Rice (Oryza sativa L.) by Light Intensity under Farm-type Solar Photovoltanic Power Station (추적식 영농형 태양광발전시스템 구축에 따른 음영별 하부작물 벼(Oryza sativa L.)의 생육비교)

  • Eon-Yak Kim;Ye-Jin Lee;In-Jin Kang;Hye-Min Son;Min-Ho Shin;Chang-Hyu Bae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.85-85
    • /
    • 2022
  • 영농형 태양광발전은 태양의 일사량을 전기발전과 영농에 공유하는(solar-sharing) 방식이다. 본 연구는 신재생에너지의 활용의 극대화를 위하여 추적식 영농형 태양광발전시스템을 구축하고 시설하부에서 일정 기간 재배중인 작물의 하부 환경과 생육을 조사하여 영농형태양광 하부작물개발을 위한 기초자료를 확보하고자 하였다. 구축한 추적식 영농형 태양광발전시스템은 4열 6단의 24장 모듈(8m × 6m)을 가지며, 발전시설 중심축 기둥 간 중심간격 14m로 단일지주식 스크루 공법으로 순천대학교 부속농장 답작포(순천시 죽평리)에 설치하여 하부 환경과 하부작물의 생육을 조사하였다. 태양광발전시설 하부작물의 생육을 조사하기 위하여 순천 농협육묘장에서 벼(신동진)를 육묘하여 2022년 6월 16일 이앙하였다. 태양광발전시스템 하부 지역을 4방위 방향에 따라 강음영(중심축으로부터 1~3m), 중음영(5m), 약음영(7~9m) 구역으로 설정하여 생육을 조사한 결과, 방위에 따른 초장은 남쪽에서 음영간 차이가 상대적으로 낮게 나타났으며, 1번기 태양광 발전시설에 의하여 음영이 중첩된 2번기 시설의 동쪽에서 대조구 대비 초장이 상대적으로 낮은 경향을 나타내었다. 음영강도에 따른 초장은 대체로 강음영구에서 낮게 나타났으며, 약음영구로 갈수록 높게 나타났다. 엽수는 방위에 따라서, 그리고 음영의 강도에 따른 차이가 초장에 비하여 작게 나타났다. 출수기의 경우 방위별로는 남쪽에서 음영별 차이가 작게 나타났으며, 음영강도에 따라서 차이를 보였다. 또한 태양광시설 하부에 데이터수집장치(Model 1650, Spctrum Technonogies, USA)를 설치하여 음영에 따른 토양전도도, 토양함수량, 토양온도, par light 등 생육환경을 조사, 비교하였다.

  • PDF

Global Trends of In-Situ Resource Utilization (우주 현지자원활용 글로벌 동향 )

  • Dong Young Rew
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.

Lunar Crater Detection using Deep-Learning (딥러닝을 이용한 달 크레이터 탐지)

  • Seo, Haingja;Kim, Dongyoung;Park, Sang-Min;Choi, Myungjin
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.49-63
    • /
    • 2021
  • The exploration of the solar system is carried out through various payloads, and accordingly, many research results are emerging. We tried to apply deep-learning as a method of studying the bodies of solar system. Unlike Earth observation satellite data, the data of solar system differ greatly from celestial bodies to probes and to payloads of each probe. Therefore, it may be difficult to apply it to various data with the deep-learning model, but we expect that it will be able to reduce human errors or compensate for missing parts. We have implemented a model that detects craters on the lunar surface. A model was created using the Lunar Reconnaissance Orbiter Camera (LROC) image and the provided shapefile as input values, and applied to the lunar surface image. Although the result was not satisfactory, it will be applied to the image of the permanently shadow regions of the Moon, which is finally acquired by ShadowCam through image pre-processing and model modification. In addition, by attempting to apply it to Ceres and Mercury, which have similar the lunar surface, it is intended to suggest that deep-learning is another method for the study of the solar system.

Assessment of DTVC Operation Efficiency for the Simulation of High Vacuum and Cryogenic Lunar Surface Environment (고진공 및 극저온 달의 지상 환경 재현을 위한 지반열진공챔버 운영 효율성 평가)

  • Jin, Hyunwoo;Chung, Taeil;Lee, Jangguen;Shin, Hyu-Soung;Ryu, Byung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.125-134
    • /
    • 2022
  • The Global Expansion Roadmap published by the International Space Exploration Coordination Group, which is organized by space agencies around the world, presents future lunar exploration guidance and stresses a lunar habitat program to utilize lunar resources. The Moon attracts attention as an outpost for deep space exploration. Simulating lunar surface environments is required to evaluate the performances of various equipment for future lunar surface missions. In this paper, an experimental study was conducted to simulate high vacuum pressure and cryogenic temperature of the permanent shadow regions in the lunar south pole, which is a promising candidate for landing and outpost construction. The establishment of an efficient dirty thermal vacuum chamber (DTVC) operation process has never been presented. One-dimensional ground cooling tests were conducted with various vacuum pressures with the Korean Lunar Simulant type-1 (KLS-1) in DTVC. The most advantageous vacuum pressure was found to be 30-80 mbar, considering the cooling efficiency and equipment stability. However, peripheral cooling is also required to simulate a cryogenic for not sublimating ice in a high vacuum pressure. In this study, an efficient peripheral cooling operation process was proposed by applying the frost ratio concept.

A Deep-Learning Based Automatic Detection of Craters on Lunar Surface for Lunar Construction (달기지 건설을 위한 딥러닝 기반 달표면 크레이터 자동 탐지)

  • Shin, Hyu Soung;Hong, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.859-865
    • /
    • 2018
  • A construction of infrastructures and base station on the moon could be undertaken by linking with the regions where construction materials and energy could be supplied on site. It is necessary to detect craters on the lunar surface and gather their topological information in advance, which forms permanent shaded regions (PSR) in which rich ice deposits might be available. In this study, an effective method for automatic detection of lunar craters on the moon surface is taken into consideration by employing a latest version of deep-learning algorithm. A training of a deep-learning algorithm is performed by involving the still images of 90000 taken from the LRO orbiter on operation by NASA and the label data involving position and size of partly craters shown in each image. the Faster RCNN algorithm, which is a latest version of deep-learning algorithms, is applied for a deep-learning training. The trained deep-learning code was used for automatic detection of craters which had not been trained. As results, it is shown that a lot of erroneous information for crater's positions and sizes labelled by NASA has been automatically revised and many other craters not labelled has been detected. Therefore, it could be possible to automatically produce regional maps of crater density and topological information on the moon which could be changed through time and should be highly valuable in engineering consideration for lunar construction.