• Title/Summary/Keyword: 엽리면

Search Result 12, Processing Time 0.024 seconds

Physical Weathering Characteristics of Mica-Schist in Sinbuk Area, Chuncheon, Korea (춘천시 신북지역에 분포하는 운모편암의 물리적 풍화특성)

  • Woo, Ik;Han, Byeong-Hyeon
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.771-784
    • /
    • 2007
  • This study shows the weathering characteristics of mica-schist affected by faulting and metamorphism through laboratory tests. Frozen-thaw test, which simulate the physical-chemical weathering processes in the laboratory, shows the important influence of foliation developed in mica-schist, resulting in $20{\sim}40%$ reduction of UCS according to weathering grade of rock. Slaking durability test was carried out for different weathering grade rock specimens and indicated that the specimens from fault area had a low durability index compared to other relatively fresh samples. XRD analysis allowed to estimate the dynamic evolution of mineral composition through wet-dry cycle in which the chlorite was the most important mineral leached out during slaking test. The creep test indicated that the main deformation produced along the foliation plane. The compacted clay minerals between discontinuity planes influence on the discontinuity shearing properties and result in a big difference between peak shear strength and residual strength. The results of laboratory tests on mica-schist show the possibility of a important deformation along the foliation plane or discontinuity.

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbng area, Korea -Crustal evolution and environmental geology of the central part of the North Sobaegsan Massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조 -북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • Gang, Ji Hun;Kim, Hyeong Sik;O, Se Bong
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.244-244
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroup(Jangsan Quarzite, Dueumri Formation and Janggum Limestone) and Pyeongan Group(Jaesan and Dongsugok Formations)] metasedimentary rocks and Mesozoic granitoid(Chunyang granite.) This study is to interpret geological structure of the North Sobaegsan Massif in the Jang-gunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis (L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(top-to-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(S4) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientation is recognized mainly in the Paleozoic metasedimentary rocks.

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbong area, Korea-Crustal evolution and environmental geology of the central part of the North Sobaegsan massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조-북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • 강지훈;김형식;오세봉
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.224-259
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroupuangsan Quarzite, Dueumri Formation and Janggun Limestone) and Pyeongan Group (Jaesan and Dongsugok Formations)l metasedimentary rocks and Mesozoic granitoid(Chunyang granite). This study is to interpret geological structure of the North Sobaegsan Massif in the Janggunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis(L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(topto-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(%) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientaion is recognized mainly in the Paleozoic metasedimentary rocks.

  • PDF

Time-relationship between deformation and metamorphism of the Paleozoic metasedimentary rocks of the north Sobaegsan massif in the Janggunbong area, Korea (장군봉지역 북부 소백산육괴의 고생대 변성퇴적암류에 대한 변형작용과 변성작용 사이의 상대적인 시간관계)

  • 강지훈;오세봉;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.190-206
    • /
    • 1998
  • The microstructures and time-relationship between deformation and growth of metamorphic minerals(metamorphism) of the Paleozoic metasedimentary rocks(Joseon Supergroup and Pyeongan Group) in the Janggunbong area at the central-south part in the North Sobaegsan Massif, Korea, have been analyzed in this paper. The first phase metamorphism (low-pressure type metamorphism), recognized as the crystallization of stack-type chloritoid and biotite and augen-type old andalusite, occurred under non-deformational condition before D1 deformation related to the formation of an E-W trending isocline-synclinal fold(Janggunbong fold) and associated its axial plane S1 foliation, and produced regional mineralogical zoning of E-W trend in the Paleozoic rocks. The second phase metamorphism(medium-pressure type metamorphism), related to the growth of staurolite and garnet porphyroblasts with straight or curved internal foliations(Si), occurred under non-deformational condition after D1 deformation related to the formation of E-W trending thrusts modifying the Janggunbong fold and during D2 deformation related to the formation of E-W trending Yecheon shear zone. This metamorphism also produced regional mineralogical zoning of E-W trend. After D2 deformation occurred the intrusion of Jurassic Chunyang granite and associated its contact metamorphism which crystallized patchy-type young andalusite and prismatic- or fibrous-type sillimanite and coarse-grained garnet. This metamorphism occurred under non-deformational condition before D3 deformation related to the formation of S3 crenulation cleavage and during early phase of D3 deformation, and formed narrow mineralogical zoning of N-S trend near Chunyang granite.

  • PDF

Ductile Shear Deformation around Jirisan Area, Korea (지리산 일대의 연성전단변형)

  • Ryoo, Chung-Ryul;Kang, Hee-Cheol;Lee, Sang-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.53-69
    • /
    • 2019
  • In the Jirisan area of the Yeongnam Massif, Korea, several ductile shear zones are developed within Precambrian gneiss complex (Jirisan metamorphic rock complex). The ductile shear zones have a general NS- and NNE-striking foliation with westward dipping directions. The foliation developed in the shear zones cut the foliation in gneiss complex. The stretching lineations are well developed in the foliated plane of the shear zone, showing ENE-trend with gentle plunging angle to the ESE direction. Within shear zone, several millimetric to centimetric size of porphyroclasts are deformed strongly as a sigmoid form by ductile shearing. The sigmoid patterns of porphyroclasts in the shear zones indicate the dextral shearing. The spatial distribution of ductile shear zone is characterized by the dominant NS- and NNE-striking dextral sense in the central and eastern regions respectively. In the western part, it develops in NE-striking dextral sense which is the general direction of the Honam shear zone. The U-Pb concordant ages obtained from the two samples, the strongly sheared leucocratic gneiss, are $1,868{\pm}3.8Ma$ and $1,867{\pm}4.0Ma$, respectively, which are consistent with the U-Pb ages reported around the study area. We supposed that the ductile shearing in the study area is occurred about 230~220 Ma during late stage of the continental collision around Korea and is preceded by granitic intrusion related to subduction during 260~230 Ma, which are supported by compiling the age data from sheared gneiss, deformed mafic dyke intruded gneiss complex, and non-deformed igneous rocks.

Case Study of Derivation of Input-Parameters for Ground-Structure Stability on Foliation-Parallel Faults in Folded Metamorphic Rocks (단층 발달 습곡지반 상 구조물 안정성을 위한 설계정수 도출 사례 연구)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.467-472
    • /
    • 2020
  • Methods for deriving design input-parameters to ensure the stability of a structure on a common ground are generally well known. Folded metamorphic rocks, such as the study area, are highly foliated and have small faults parallel to the foliation, resulting in special research methods and tests to derive design input parameters, Etc. are required. The metamorphic rock ground with foliation development of several mm intervals has a direct shear test on the foliation surface, the strike/dip mapping of the foliation, the boring investigation to determine the continuity of the foliation, and the rock mass rating of the metamorphic rock. etc. are required. In the case of a large number of small foliation-parallel faults developed along a specific foliation plane, it is essential to analyze the lineament, surface geologic mapping for fault tracing, and direct shear test. Folded ground requires additional geological-structural-domain analysis, discontinuity analysis of stereonet, electrical resistivity exploration along the fold axis, and so on.

Formation Mechanism of Recumbent Fold observed in the Bangrim-ri, Pyeongchang-gun, Korea (평창군 방림리에 발달하는 횡와습곡의 형성 기작)

  • Cheon, Youngbeom;Kang, Hee-Cheol;Ha, Sangmin;Lee, Sun-Kap;Son, Moon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.217-225
    • /
    • 2019
  • This study describes a large recumbent fold, which occurs at the north entrance slope of the Batjae tunnel, Pyeongchang-gun, Gangwon-do, and interprets its formation mechanism. The several-hundred-meter scale fold, developed in the Jeongseon Limestone of the Paleozoic Joseon Supergroup, has a nearly horizontal axial plane and its head is facing north. Stretching lineations ($L_1$) observed on the composite foliations of bedding and axial plane cleavage plunge southward at about $10^{\circ}$. Small A-type or eye-shaped sheath folds together with S-shaped asymmetrical folds are often observed in the fold limbs and their axes are nearly parallel to the lineations ($L_1$) within center and rear parts of the fold. It is thus interpreted that the recumbent fold is a large sheath fold produced by the top-to-the-north ductile shearing due to the Songrim orogeny during the late Paleozoic to Triassic.

Identification of Leaf Characteristics from Various Crosses in Relation with Populus glandulosa U. (Populus glandulosa U.에 유사(類似)한 교잡종(交雜種)의 엽특성(葉特性))

  • Son, Doo Sik;Yim, Kyong Bin
    • Journal of Korean Society of Forest Science
    • /
    • v.45 no.1
    • /
    • pp.1-10
    • /
    • 1979
  • This study was conducted to widen the range of characteristics of the hybrids, P.alba ${\times}$ P.glandulosa, i.e. aiming for gene population expansion P.glandulosa seemed to have the similar characteristics as the one segregated from the natural hybrids between P.alba and P.davidiana. Thus the main objectives of this study were to make many crosses among poplars and then to identify leaf characteristics of the crosses similar to P.glandulosa, the results obtained can be summerized as follows; 1. Leaf characteristics such as leaf margin, presence of glands at leaf base and pubescence density, of crosses made from P.alba.davidiana ${\times}$ P.datidiana, and P.davidiana.alba ${\times}$ P.davidina showed 44% and 90%, respectively, of similarity to P.glandulosa. 2. The ratio of leaf size, including leaf length, leaf width, length from leaf base to width line, and petiole length, of the above crosses was similar to P.glandulosa. 3. Pubescence density of the dorsal leaf surface in hybrids between P.alba and P.davidiana showed generally intermediate of the parental appearance. Frequency of pubescence appearance differed from depending upon the use of P.alba, either as a female or a male parent. The use of P.alba as a male parent increased frequency of Pubescence appearance. 4. The presence of glands at the leaf base in P.glandulosa may be inherited from P.davidiana which possesses gland although gland is not present in all P.davidiana rather from P.alba which has no gland.

  • PDF

Variation and Heredity of Stomatal Frequency, Stomatal Size and Transpiration in Populus alba × P. glandulosa and Its Parents (Populus alba × P. glandulosa 및 교배양친수(交配兩親樹)의 기공빈도(氣孔頻度), 기공(氣孔)크기 및 수분증산(水分蒸散)의 변이(變異)와 유전(遺傳))

  • Son, Doo Sik;Kim, Kwang Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.75 no.1
    • /
    • pp.51-54
    • /
    • 1986
  • The good growth of Populus alba ${\times}$ P. glandulosa is shown at the foothill of the mountain where good soil moisture is available, but its growth is poor at the upper part of the mountain where soil moisture is limitted. Stomatal frequency, stomatal size and transpiration rates that affect soil moisture demand were determined in order to know how this character is inherited from its parents. Number of stomata per $mm^2$, length and width of stomata from the abaxial leaf and transpiration rate ($g/cm^2$) per day in P. alba ${\times}$ P. glandulosa showed intermediate values between those of their parents, while P. alba showed the highest values and P. davidiana the lowest values. The values of stomatal frequency of P. alba ${\times}$ P. glandulosa were close to the expected mean values of parents in the $x^2$ test, and in the regression analysis the transpiration rates for the hybrid and its midparent had strong relationship with 0.97 of regression coefficient. The fact that these intermediate characteristics were observed in the hybrid suggests incomplete dominance in the hybrid. It is concluded that soil moisture demand in P. alba ${\times}$ P. glandulosa and its parents is closed related to stomatal frequency, stomatal size and transpiration rate.

  • PDF

Deformation history of Precambrian metamorphic rocks of Sobaegsan Massif in Giseong-myeon area, Uljin-gun, Gyeongsangbuk-do, Korea (경상북도 울진군 기성면 지역에서 소백산육괴 선캠브리아기 변성암류의 변형작용사)

  • Kang Ji-Hoon;Kim Nam-Hoon;Song Yong-Sun;Park Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.2 s.44
    • /
    • pp.49-59
    • /
    • 2006
  • This study clarifies the deformation history of Precambrian metamorphic rocks of Sobaegsan Massif (Wonnam Formation, Pyeonghae granite gneiss, Hada leucogranite gneiss) in Giseong-myeon area, Uljin-gun, Korea. It is based on the geometric and kinematic features and the developing sequence of multi-deformed rock structures. It also reviews the extension of Yecheon Shear Zone and the relative occurrence time of each deformation phase from previous researches. It suggests that the geological structure was formed at least through five phases of deformation after formation of their gneissosity or schistosity. (1) The first phase of deformation took placed under compression of ENE-WSW direction, forming NNW trending regional foliation and very tight isoclinal fold. The general trend of gneissosity or schistosity is inferred to be ENE before the first phase of deformation, being rearranged into NNW by the isoclinal folding. (2) The second phase of deformation formed ENE trending regional foliation and tight, isoclinal, rootless intrafolial folds under compression of NNW-SSE direction [occurrence time: after deposition (Permian age) of Dongsugok Formation, Pyeongan Croup, Janggunbong area]. (3) The third phase of deformation occurred by dextral ductile shearing on the regional foliation, forming stretching lineation of ENE trend and S-C mylonitic structure (after intrusion of Hesozoic homblende granite, Sangunmyeon area-before intrusion of Mesozoic Chunyang granite, Janggunbong area). (4) The fourth phase occurred under (E)NE-(W)SW compression, forming (N)NW trending open fold. (5) The fifth phase took place under N-S compression, forming NNE and NNW trending conjugate strike-slip faults, E-W trending thrust-slip faults, and drag folds related to these fault movements. The deformed structures of fourth and fifth phases result from tectonic movement associated with the developing of the Gyeongsang Basin in Cretaceous age, and it partially rearranged the general ENE trend of the regional foliation in the study area. It also suggests that the Yecheon Shear Zone of E-W trending extends into this area but the ductile shear deformation is weakly developed.