• Title/Summary/Keyword: 엽록소-$\alpha$)

Search Result 70, Processing Time 0.027 seconds

The Change in Patterns and Conditions of Algal Blooms Resulting from Construction of Weirs in the Youngsan River: Long-term Data Analysis (보 건설에 따른 영산강의 조류 발생 및 환경 변화: 수질측정망 장기 자료 분석)

  • Shin, Yongsik;Yu, Haengsun;Lee, Hakyoung;Lee, Dahye;Park, Gunwoo
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.238-252
    • /
    • 2015
  • The effect of weir construction (2009~2011) was investigated on algal bloom dynamics and surrounding conditions in the Youngsan River by analyzing the long-term (2001~2014) data provided by the Water Information System, Ministry of Environment. The data include chlorophyll a and water properties such as total suspended solids (TSS), ammonium ($NH_4{^+}$), nitrate ($NO_3{^-}$), orthophosphate ($PO{_4}^{3-}$), total nitrogen (TN), total phosphorus (TP) and DIN/DIP molar ratio collected from 12 stations along the channel of the river. Temporal variations were examined using data collected monthly from 2001~2014 and Box-Whisker plot was used to examine the difference in algal bloom dynamics between before (2006~2008) and after (2012~2014) the weir construction. Pearson's correlation analysis was also used to analyze the correlation of parameters. The results showed that TSS affecting water turbidity increased during the construction but decreased especially at the stations located in the upper and middle regions of the river after the construction. Ammonium concentrations increased whereas the concentrations of other nutrients decreased after the construction inducing an increase in N:P molar ratio. Chlorophyll a decreased suddenly during the construction but increased clearly after the construction at the stations where TSS decreased. This indicates that algal blooms can develop in the Youngsan River due to a decrease in turbidity that increases light penetration in water column although the concentrations of nutrients such as orthophosphate were reduced after the weir construction.

Control of Phytoplankton Bloom using Apple Snail(Pomacea canaliculata: Ampullariidae) (왕우렁이를 이용한 식물플랑크톤 대발생 제어)

  • Lee, Min Hyuk;Kim, Min Ji;Kim, Yong Jae
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.83-91
    • /
    • 2015
  • This study is measured the change of chlorophyll-${\alpha}$ concentration and phytoplankton density, the grazing rates (GR) and pseudofaeces production (PFP), by grazing of freshwater apple snail, Pomacea canaliculata, to investigated that the snails are able to control of phytoplankton bloom. The experiments are performed to evaluate the GR and PFP at different conditions such as incubation time (0, 2, 4, 6, 8, 10 and 12 hr), shell height (1.0 to 4.0 cm, n=108), snail density (1, 1.5, 2.5, 3.5 and 5 indiv. $L^{-1}$) and food concentration (200, 400, 600, 800 and $1000{\mu}g$ $L^{-1}$). Regarding feeding time, the highest GR (2.5 L. $gAFDW^{-1}h^{-1}$) and PFP (15.3 mg $AFDW^{-1}$) showed at 4 hr after snail stocking, respectively. The snail, smaller than 1.5 cm in body size, showed the highest of GRs (2.54 L. $gAFDW^{-1}h^{-1}$) for the initial period (2 hr of stocking), compared to those greater than 1.5 cm, which showed a stable FR, higher than 0.099 L. $gAFDW^{-1}h^{-1}$. Upon snail density effect, the density of 5 indiv. $L^{-1}$ induced the most effective inhibition on phytoplankton biomass with the highest PFP. On the food concentration, the highest GR (0.54 L. $gAFDW^{-1}h^{-1}$) and PFP (8.5 mg $gAFDW^{-1}$) were induced at the level of $600{\mu}g$ $L^{-1}$, respectively. We checked that it is possible to control of phytoplankton bloom by the grazing of apple snail as well as Reeve. However, it required a through research for the remove of pseudofaeces and 2nd problem by the decomposition of the organic materals.

Stabilization of Membrane Proteins by Benzyladenine during Wheat Leaf Senescence (노쇠중인 밀잎에서 Benzyladenine에 의한 막단백질의 안정화)

  • 진창덕
    • Journal of Plant Biology
    • /
    • v.35 no.2
    • /
    • pp.117-123
    • /
    • 1992
  • The effect of benzyladenine (BA) on lipid peroxidation and compositions of total insoluble proteins and chloroplast thylakoid protein from wheat primary leaves during senescence in the dark was studied. BA ($10^{-5}\;M$) treatment prevented conspicuously the loss of chlorophyll content and soluble and insoluble leaf protein contents in senescing wheat leaf segments during 4-day dark incubation. Under the BA treatment, especially, the level of insoluble protein was highly maintained than that of soluble protein. Also, the increase of malondialdehyde (MDA: the peroxidation product of membrane lipids) content was inhibited in the BA treated leaves. Three major polypeptide bands in quantity corresponding to 57, 26 and 12 KD molecular weight were clearly resolved with other minor bands by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) in the insoluble protein fraction. The insoluble protein profiles of the control leaves showed a remarkable decrease in the intensity of the 57 and 12 KD band except for 26 KD band in the 72 h dark incubation. This loss during dark incubation was reduced by BA treatment. More than 20 polypeptides were resolved in the chloroplast thylakoid membrane fraction with the most prominent bands which are 59 and 57 KD ($\alpha\;and\;\beta$ subunit of coupling factor: CF) and 26 KD (apoprotein of LHCP). The changes in thylakoid protein profile during 72 h dark incubation showed the rapid degradation in control, but this degradation was prevented in quantity by BA treatment. The above results suggested that BA would inhibit the peroxidation of membrane lipids, thereby preventing the loss of membrane proteins which led to the maintenance of the membrane integrity including chloroplast thylakoid.

  • PDF

Quantification of White Spot Syndrome Virus (WSSV) in Seawaters Using Real-Time PCR and Correlation Analyses between WSSV and Environmental Parameters (Real-Time PCR을 이용한 해수 존재 흰반점 바이러스의 정량 및 양식 환경인자와의 상관관계 분석)

  • Song, Jae-Ho;Choo, Yoe-Jin;Cho, Jang-Cheon
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • White Spot Syndrome Virus (WSSV) is one of the most virulent viral agents in the penaeid shrimp culture industry. In this study, WSSV in a Fenneropenaeus chinensis shrimp farm and an adjacent seawater were concentrated using a membrane filtration and quantified using the quantitative real-time PCR (QRT-PCR) method with newly designed primers and Taqman probe. Sensitivity of primers and probe was proven by WSSV standard curve assay in QRT-PCR. In order to demonstrate the relationship between WSSV and environmental parameters, physicochemical and biological parameters of the farm and influent seawaters were monitored from June to September, 2007. The abundance of WSSV ranged 3,814-121,546 copies per 1 liter of seawater, which was correlated with fecal enterococci ($r^2=0.9$, p=0.02), chlorophyll ${\alpha}$ ($r^2=0.8$, p=0.03) and $BOD_5$ ($r^2=0.8$, p=0.07). Subsequently, it is concluded that the QRT-PCR method using Taqman probe established in this study was efficient to clarify the quantification of WSSV in seawaters. Statistical analyses of environmental parameters obtained in this study also showed that the abundance of WSSV was correlated with several biological parameters rather than physicochemical parameters.

Effect of Selected Environmental Factors on the Production of Geosmin in Phormidium Sp. (Phormidium sp.의 Geosmin 생산에 미치는 환경요인의 영향)

  • 박대균;오희목;안치용;맹주선
    • Korean Journal of Microbiology
    • /
    • v.36 no.1
    • /
    • pp.52-57
    • /
    • 2000
  • A method for quantitative and qualitative analysis of geosmin, odorant produced by several actinomycetes and cyanobacteria, was established and optimized. The effects of environmental conditions on the growth of Phormidium sp. NIVA-CYA7 were examined and the production and release of geosmin by the species was analyzed by using the purge and trap-gas chromatographic technique. One of the major advantages of the technique established in the present study is that the preparation of sample is simpler and purge time is shorter. Under the culture conditions (pH 7.9, $20^{\circ}C$, 120-140 $\mu$E/$m^2$/s and Z8 medium), Phormidium showed growth characteristics with a lag phase for 8 days and an exponential phase for 14 days followed by a stationary phase. Reduction of inorganic nitrogen concentrations in the culture medium from 250 to 100 or 25 $\mu$M brought no significant effect on the cell growth. However, the cell growth was significantly inhibited with decreasing concentrations of inorganic phosphorus from 25 to 10 or 2.5 $\mu$M. When the inorganic phosphorus concentration in the medium was lowered from 25 to 10 $\mu$M, the levels of geosmin in the organism expressed as percentages per unit TOC and chlorophyII-$\alpha$ increased by 35% and 68%, respectively. When the initial pH of the medium was 9.4, geosmin content was 0.0824 $\mu$g/mg C, which was 2-fold higher than that at pH 7.9 Consequently, the level of geosmin in Phormidium was found to vary with growth phases of the culture, external inorganic phosphorus concentration and external pH, while the release of geosmin was not significantly affected by the factors.

  • PDF

Applications and Assessments of a Multimetric Model to Namyang Reservoir (남양호에서 다변수 메트릭 모델 적용 및 평가)

  • Han, Jung-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.228-236
    • /
    • 2008
  • The purpose of this study was to evaluate fish metric attributes using a model of Lentic Ecosystem Health Assessment (LEHA) and apply the model to the dataset sampled from six sites of Namyang Reservoir during October 2005$\sim$May 2006. The model was composed of 11 metries and the metric attributes were made of physical, chemical and biological parameters. Trophic composition's metrics showed that tolerant species ($M_3$, 80%) and omnivore species ($M_4$, 92%) dominated the fish fauna, indicating a biological degradation in the aquatic ecosystem. The metric of $M_7$, relative proportions of exotic species, also showed greater than 8% of the total, indicating a ecological disturbance. The average value of LEHA model was 24.3 (n= 12) in the reservoir, indicating a "poor condition" by the criteria of An and Han (2007). Spatial variation based on the model values was low (range: $21{\sim}26$), and temporal variation occurred due to a monsoon rainfall. Electrical conductivity (EC) and tropic state index of chlorophyll-$\alpha$ [TSI(CHL)] was greater in the premonsoon than the postmonsoon.

Effect of a Freshwater Bivalve (Unio douglasiae) and a Submerged Plant (Potamogeton crispus) on the Growth Inhibition of a Cyanobacterium Oscillatoria sp. (담수패류(Unio douglasiae)와 침수식물(Potamogeton crispus)의 유해 남조 Oscillatoria sp. 성장억제 효과)

  • Kim, Keun-Hee;Kim, Baik-Ho;Park, Myung-Hwan;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.68-76
    • /
    • 2008
  • This study examined the inhibition effects of a freshwater bivalve (Unio douglasiae) and a submerged plant (Potamogeton crispus) on the cyanobacterial bloom (Oscillatoria sp.). The experiment were conducted in aquarium $(50cm{\times}65cm{\times}120cm)$ with lake sediments in the bottom of the aquarium in 10 cm thick. Before the experiments, artificial cyanobacterial bloom was induced with the addition of lake sediment and CB medium. Total 12 transparent acrylic cylinders (${\Phi}19cm$, height 40 cm) were placed in the aquarium, and within which bivalves and plants were placed in various conditions such as the control (C), plant addition (P:5 stems), mussel addition (U:2 individuals), and both mussel and plant addition (PU: the same quantity as used in each treatment). The experiment was conducted in triplicate during 7 days. pH, dissolved oxygen (DO), electric conductivity (EC), salinity, cyanobacterial cell density, chlorophyll-${\alpha}$ concentration, and mussel filtering rate were monitored daily. At the end of the experiment, total phosphorus (TP), total nitrogen (TN), and plant height and weight were measured. Overall, a large degree of cyanobacterial growth inhibition appeared in both P and U treatments, and the effect was highest in the U treatment, followed by P and PU. The combined treatment of both U and P did not show any synergic effects compared to the effect in separated treatment. In all enclosures of the treatments chlorophyll-${alpha}$ (Chl-${alpha}$) concentration decreased until 36 hours after the additions of the plants and mussels. In contrast, Chl-${alpha}$ concentrations increased in PU enclosures after 36 hours. The same trend was shown in the cell density of Oscillatoria. pH and DO gradually decreased until 120 and 144 hours, respectively, in the P and PU enclosures. TP concentration increased in the mussel enclosures (U and PU), while TN concentration largely decreased in the plant enclosures (P and PU). Our results suggest that applied bivalve (Unio) and submerged plant (Potamogeton) seemed to have a potential effect on the growth inhibition of cyanobacteria, but their combined application may have an antagonistic effect to diminish the degree of the inhibition.

Ecological Characteristics of Phytoplankton Communities in the Coastal Waters of Gori, Wolseong, Uljin and Younggwang II. Distributions of Standing Crops and Environmental Variables (1992~1996) (고리, 월성, 울진 및 영광 연안해역에서 식물플랑크톤 군집의 생태학적 특성 II. 현존량 분포 및 환경요인들(1992~1996))

  • 강연식;최중기
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.108-128
    • /
    • 2002
  • In order to investigate the ecological characteristics of phytoplankton communities around a nuclear power plant in Gori coastal waters of the South East Sea, Wolseong and Uljin coastal waters of the East Sea and Younggwang coastal waters of the Yellow Sea, the standing crops and chlorophyll-$\alpha$ concentrations of phytoplankton were studied during 1992~1996 and the relationships between standing crops and environmental variables were analyzed. The concentrations of nitrogenous nutrients were on average 0.101, 0.094, 0.072 and 0.108mg/$\ell$ and those of phosphorus were on average 0.007, 0.008, 0.006 and 0.009mg/$\ell$ in Gori, Wolseong, Uljin and Younggwang, respectively. The N:P ratios were highly variable, ranging from 3.2 to 57.3, from 3.1 to 109.0, from 2.6 to 102.0 and from 1.0 to 165.0 in Gori, Wolseong, Uljin and Younggwang, respectively. The concentrations of suspended solids were on average 18.7, 16.7, 11.6 and 52.7mg/$\ell$ and transparencies were on average 3.8, 5.4, 7.9 and 0.7 m in Gori, Wolseong, Uljin and Younggwang, respectively. Total standing crops of phytoplankton averaged 710,659, 687,508, 656,245 and 1,278,173cells/$\ell$ in Gori, Wolseong, Uljin and Yaunggwang, respectively. The standing crops of microplankton(>20${\mu}{\textrm}{m}$) averaged 357,546, 333,638, 276,407 and 592,975cells/$\ell$ those of nanoplankton(<20${\mu}{\textrm}{m}$) averaged 353,113, 353,870, 379,838 and 574,563cells/$\ell$ in Gori, Wolseong, Uljin and Younggwang, respectively. While standing crops of diatoms were averaged 282,009, 284,710, 238,758 and 574,563 cells/$\ell$, those of dinoflagellates were averaged 46,079, 35,401, 32,906 and 16,749 cells/$\ell$ in Gori, Wolseong, Uljin and Younggwang, respectively. The seasonal standing crops of diatoms in Gori, Wolseong and Uljin were higher in Spring than other seasons, but were lower in Summer than other seasons in Younggwang. The seasonal standing crops of dinoflagellates in Gori and Younggwang were higher in Summer than other seasons, but were higher in Autumn than other seasons in U]jin. Average of chlorophyll-$\alpha$ concentrations ranged from 2.16 to 4.28$\mu\textrm{g}$/$\ell$ in 4 study areas with the highest concentration occurred in Younggwang. Indices of species diversity ranged from 2.11 to 2.24 in 4 study areas. While community structures of phytoplankton were unstable during winter and stable during summer in Gori, Wolseong and Uljln coastal waters, those of phytoplankton were stable during winter and summer than during spring and autumn in Yaunggwang. The analysis results of Pearson product moment correlation coefficient between standing crops and environmental variables showed that distributions of standing crops were affected by transparencies, suspended solids, and some nutrient(N $O_3$$^{[-10]}$ -N, P $O_4$$^{3-}$-P), even though the degree of influences were a little different according to the season and the surveyed zone.

Evaluation of Water Quality after Rehabilitation of Cheonggye Stream using AGP Test (조류성장잠재력 조사를 이용한 청계천 복원 이후 수질 평가)

  • Park, Myung-Hwan;Hwang, Soon-Jin;Suh, Mi-Yeon;Kim, Yong-Jae;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.234-243
    • /
    • 2007
  • Algal growth potential (AGP) test was performed to evaluate the water quality and changes in phytoplankton communities before and after a heavy rain event at six sampling sites in Cheonggye Stream (St. 1 and 2), Jungnang Stream (St. 3 and 4), and Lower part of Han River System (St. 5 and 6) after rehabilitation of Cheonggye Stream, October 2005. To test AGP on each sampling site, cyanobacterium Microcystis aeruginosa was applied as a standard alga. Total nitrogen (TN) showed high values at Jungnang Stream, while St. 4 recorded highest values in this study. However, TN values of Cheonggye Stream and Lower Part of Han River showed similar levels. Total phosphate (TP) also showed high values at Jungnang Stream, while St. 4 recorded highest. However, TP in Cheonggye Stream were extremely low levels. Although chlorophyll-${\alpha}$ (chi-${\alpha}$) contents before the rain event were similar through the sampling sites, chl-${\alpha}$ after the rain increased dramatically at Jungnang Stream and Lower part of Ban River. In particular, after the rain, TP was the highest at St. 4, where Cyclotella sp. dominated the phytoplankton community. When compared with control, AGP values before the rain were comparatively low in all sites, while those after the rain highly increased with the dose-dependently of field water added, due perhaps to the increased nutrients by rainfall. Similar results were observed in Cheonggye Stream. Therefore, for the aesthetic fostering for the citizens, although Cheonggye Stream was Presently being sustained by treated water supply, they have a potential of outbreak of phytoplankton by the increased nutrients supply when a heavy rain comes.

Springtime Distribution of Inorganic Nutrients in the Yellow Sea: Its Relation to Water Mass (수괴특성에 따른 춘계 황해의 영양염 분포 특성)

  • Kim, Kyeong-Hong;Lee, Jae-Hak;Shin, Kyung-Soon;Pae, Se-Jin;Yoo, Sin-Jae;Chung, Chang-Soo;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.224-232
    • /
    • 2000
  • Inorganic nutrient concentrations in relation to springtime physical parameters of the Yellow Sea were investigated during April 1996. Three major water masses, i.e., the Yellow Sea Warm Current Water (YSWC), Coastal Current Water (CCW) and Changjiang River Diluted Water (CRDW), prevailed in the study area. Water masses were vertically wel1 mixed throughout the study area, and nutrients were supplied adequately from bottom to surface layer. As result of ample nutrients supplied by vertical mixing together with progressed daylight condition, springtime phytoplankton blooms were observed, which was responsible for the depletion of inorganic nutrients in surface water column. Low nutrients concentration in bottom water of the central Yellow Sea (Stn. D9; nitrate: <2 ${\mu}$M, phosphate: <0.3 ${\mu}$) was associated with the entrance of YSWC which is characterized by high temperature and salinity. Influenced by runoff and vertical tidal mixing, CCW with high nutrient concentrations probably associated with China and Korea coastal waters with high nutrients concentration. For the local scale of inorganic nutrient distribution, nutrient transfers from coast to central areas were limited due to restriction imposed by tidal fronts (Stn. D6) and thus affected the horizontal nutrient profiles. Relatively high phytoplankton biomass was observed in the tidal front (Chl-${\alpha}$=12.38 ${\mu}$gL$^{-1}$) during the study period. Overall, the springtime nutrient distribution patterns in the Yellow Sea appeared to be affected by: (1) Large-scale influx of YSWC with low nutrient concentrations and CCW with high nutrient concentrations influenced by Korea and China coastal waters; (2) vertical mixing of water mass and phytoplankton distribution; and (3) local-scale tidal front as well as phytoplankton blooms alongthe tidal front.

  • PDF