• Title/Summary/Keyword: 엽록소 형광 반응

Search Result 85, Processing Time 0.024 seconds

Effect of Light-emitting Diodes on Photosynthesis and Growth of in vitro Propagation in Tea Tree (Camellia sinensis L.) (LED 광질이 차나무 기내배양묘의 생육 및 광합성에 미치는 영향)

  • Im, Hyeon-Jeong;Na, Chae-Sun;Song, Chi-Hyeon;Won, Chang-O;Song, Ki-Seon;Hwang, Jung-Gyu;Kim, Do-Hyun;Kim, Sang-Geun;Kim, Hyun-Chul
    • Journal of agriculture & life science
    • /
    • v.53 no.6
    • /
    • pp.13-21
    • /
    • 2019
  • The influences of light generated by LEDs on shoot growth and photosynthesis of Tea plant(Camellia sinensis L.) were evaluated. The growth characteristics were investigated after 45 days of culture under four different light qualities: fluorescent lamp, red LED, blue LED, red+blue+white LED. Shoot growth was promoted by red light, especially root length and area were further promoted under the red+blue+white LED. Also, T/R ratio and Chlorophyll content were highest in red+blue+white. Fluor Cam was used to measure the fluorescence images of the plants, inhibition of photochemical efficiency(Fv/Fm) were not changed in all treatment. However, non-photochemical quenching(NPQ) were found rapidly increasing in blue LED, these results were that blue LED were inhibit photosynthetic efficiency and must be considered for efficiently in vitro cultivation of the tea plant. The above results suggest that light qualities could be an important factor to foster in vitro growth of the species. Also, In order to produce healthy plants, it is effective to using light qualities of red+blue+white LED on in vitro culture of the tea plant. These results could be used to mass propagating shoot and produce of healthy seedling.

Effect of Light Intensity on the Growth Responses of Three Woody Plants for Indoor Landscaping (실내녹화용 목본식물 3종의 초기 생육반응에 미치는 광량의 영향)

  • Kwon, Kei-Jung;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • The purpose of this study was to investigate the effects of light intensity on the initial growth response of three woody plants for indoor landscaping; Ardisia pusilla, Clusia rosea and Fatsia japonica. The plants were planted in 10cm pots, the light intensities used were of four levels-15, 30, 60, $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD-and light irradiation time was set to 12/12 (day/night). Growth responses including plant height, leaf length, leaf width, chlorophyll fluorescence (Fv/Fm), SPAD and Hunter values were measured at 4-week intervals, and shoot weight and root weight of fresh and dry plants were measured after completion of the experiment. Fatsia japonica tended to show greater leaf length and leaf width as light intensity became greater, while other plants did not show any significant differences at different light intensities. The Fv/Fm value of the Ardisia pusilla was found to be stressed at 60 and $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, while the Fv/Fm values were within normal range with other plants or at other light intensity levels to show no stress. Only Clusia rosea showed significantly different SPAD values at $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and there was no significant SPAD value difference found with other plants or at other light intensity levels. While Hunter values of the Ardisia pusilla did not show any significant differences at any light intensity levels, Clusia rosea and Fatsia japonica showed specificity in L, a and b values at 60 and $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. Ardisia pusilla showed a big stem growth at $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and Clusia rosea showed a steady growth at 60 and $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$.

Effect of Irrigation Starting Point of Soil on Chlorophyll Fluorescence, Stem Sap Flux Relative Rate and Leaf Temperature of Cucumber in Greenhouse (시설 토양 오이재배에서 관수개시점 처리가 광합성 형광반응, 줄기수액흐름 및 엽온에 미치는 영향)

  • An, Jin Hee;Jeon, Sang Ho;Choi, Eun Yong;Kang, Ho Min;Na, Jong Kuk;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.46-55
    • /
    • 2021
  • This experiment was conducted to investigate the effect on chlorophyll fluorescence, stem sap flux relative rate (SFRR) and leaf temperature of cucumber when irrigation is controlled using a soil moisture tensiometer. Cucumber (Cucumis sativus L.) 'Chungchun' was irrigated of 10-10-20 kPa and 20-10-10 kPa by soil starting point of irrigation at each growth stage. At the 66 days after treatment (DAT) of 736 to 854 W·m-2 and above 32℃, chlorophyll fluorescence variables (Fo, Fm, Fv/Fm) values showed significantly different between treatments. The Fo and Fv/Fm value in the daytime (10:30 am to 6:00 pm) at 66 DAT was higher in 20-10-10 kPa treatment than in 10-10-20 kPa treatment. The Fv/Fm value decreased when the leaf temperature was increased. There was no difference in leaf growth (length, width and area) at 28 and 66 DAT, but the chlorophyll content (SPAD value) was significantly higher in 20-10-10kPa treatment. SFRR and leaf temperature increased with light intensity and temperature increased. In both treatments, the SFRR started to increase sharply between 8 am and 9 am when the solar radiation is 170 W·m-2 or higher. The soil temperature of the treatments decreased after irrigation, that showed 31.0℃ at 10-10-20kPa and 28.5℃ at 20-10-10kPa on July 5 (820W·m-2 at 1 pm). However, there was no difference in SFRR, leaf temperature, temperature difference (leaf temperature - air temperature) and VPD between treatments. SFRR was significantly positive correlate with the leaf temperature (p < 0.01, r = 0.770). The SFRR and leaf temperature showed positive significant correlation with solar radiation, temperature, soil temperature, soil moisture content and VPD. There was a negative significant correlation with relative humidity and temperature difference.

The Effects of Water Stress on C$_3$ Plant and CAM Plant (C$_3$ 식물과 CAM 식물에서 수분 스트레스의 효과)

  • An, Du-Hwan;Kim, Yong-Taek;Kim, Dae-Jae;Lee, Joon-Sang
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.271-278
    • /
    • 2008
  • The differences of several kinds of physiological responses between Commelina communis (C$_3$ plant) and Sedum sarmentosum (CAM plant: Crassulacean Acid metabolism) when both plants were exposed to water stress for 3 weeks were investigated. In case of Commelina it was shown a clear loss of water to 12% in three weeks, but no changes were observed in Sedum. Total chlorophyll content was also reduced to 57% in Commelina but not clear changes of chlorophyll content in Sedum. were observed for three weeks. In chlorophyll fluorescence experiments Fv/Fm ratios were reduced to 19% in Commelina, but no changes were observed in Sedum. There were very sensitive responses according to the different KCl concentrations and the stomatal aperture of epidermal strips was 12.8 ${\mu}m$ at 200 mM KCl in Commelina, but less than 3 ${\mu}m$ was observed at the same KCl concentration in Sedum. In addition, there were no chloroplasts in guard cells of Sedum, but most plants had chloroplasts including Commelina. From the above results, the ability of water stress resistance in Sedum. could be come from slow physiological metabolism including growth and less loss of water through unique stomatal characteristics.

Growth and Physiological Response of Three Evergreen Shrubs to De-icing Salt(CaCl2) at Different Concentrations in Winter - Focusing on Euonymus japonica, Rhodoendron indicum, and Buxus koreana - (겨울철 염화칼슘(CaCl2) 처리에 따른 가로변 3가지 상록 관목류의 생육 및 생리반응 - 사철나무, 영산홍, 회양목을 중심으로 -)

  • Ju, Jin-Hee;Park, Ji-Yeon;Xu, Hui;Lee, Eun-Yeob;Hyun, Kyoung-Hak;Jung, Jong-Suk;Choi, Eun-Young;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.2
    • /
    • pp.122-129
    • /
    • 2016
  • It is important to know the sensitivity of shrubs to de-icing salt in order to set guidelines for ecological tolerance of evergreen shrubs along roads. Therefore, the aim of this study was to investigate the influence of de-icing salt, calcium chloride($CaCl_2$), on the growth and physiological characteristics of three evergreen shrubs, Euonymus japonica, Rhododendron indicum, and Buxus koreana. Plants were exposed to calcium chloride at different concentrations(weight percentage, 0% as control, 1.0%, 3.0%, and 5.0%) through amended soil maintained from the start of the experiment in October of 2014 until termination in March of 2015. The survival rate, plant height, leaf length, leaf width, leaf shape index, number of leaves, fresh weight, dry weight, dry matter, root/top ratio, chlorophyll contents, fluorescence, photosynthesis, stomatal conduct, and transpiration rate were recorded. Elevated calcium chloride concentrations decreased plant height, leaf length, leaf width, leaf shape index, fresh weight, dry weight, dry matter, and R/T ratio of the three shrubs. Root growth responded more sensitively than the top growth to salinity. However Euonymus japonica was more tolerant to salt stress than Rhododendron indicum and Buxus koreana. Their growths were totally inhibited by $CaCl_2$ above 3.0% and 1.0% concentrations, respectively. Chlorophyll content, fluorescence, photosynthesis, stomatal conduct, and transpiration rate of both Rhododendron indicum and Buxus koreana were reduced sharply, while Euonymus japonica exhibited mild reductions compared to plants grown in control when increasing calcium chloride was used. Especially, the transpiration rates of Rhododendron indicum, and the photosynthesis and stomatal conduct of Buxus koreana were suppressed as the concentrations of calcium chloride increased. Therefore, Euonymus japonica should be considered as an ecologically tolerant species with proven tolerance to de-icing salt.

Chlorophyll Fluorescence and $CO_2$ Fixation Capacity in Leaves of Camellia sinensis, Camellia japonica, and Citrus unshiu (차나무, 동백나무, 귤나무 잎에서 엽록소 형광 및 $CO_2$ 흡수능의 비교 분석)

  • Oh, Soonja;Lee, Jin-Ho;Ko, Kwang-Sup;Koh, Seok Chan
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.2
    • /
    • pp.98-106
    • /
    • 2012
  • The chlorophyll fluorescence and photosynthetic $CO_2$ fixation capacity of leaves from three major crop trees found on Jeju Island, Camellia sinensis L., Camellia japonica L., and Citrus unshiu M., were analyzed. The photosynthetic $CO_2$ fixation rate of C. sinensis was similar to that of C. unshiu, and much higher than that of C. japonica which belongs to the same genus. Stomatal conductance in the three species was high at dawn and low during daytime. The intercellular $CO_2$ concentration of the three species was also high at dawn and decreased at midday. The transpiration rate showed an opposite trend from the intercellular $CO_2$ concentration. The photochemical efficiencies of PSII (Fv/Fm) in C. sinensis were slightly lower at midday compared to the level at dawn and/or dusk. The decline in Fv/Fm of C. sinensis at midday was much smaller than that of C. japonica. These results indicate that C. sinensis is better acclimated to high levels of radiation under natural conditions in late summer, although its PSII reaction center was inhibited by strong radiation. Of the chlorophyll fluorescence parameters in the species, the RC/CS decreased significantly while the ABS/RC, TRo/RC, ETo/RC, and DIo/RC increased significantly at midday in late summer. However, C. unshiu did not show significant changes in these values depending on the time of day. Among the three species, the daily $CO_2$ fixation rate in C. sinensis ($320.1mmol\;m^{-2}d^{-1}$) was the highest, followed by that of C. unshiu ($292.5mmol\;m^{-2}d^{-1}$) and C. japonica ($244.8mmol\;m^{-2}d^{-1}$). Thus, C. sinensis may be a valuable crop tree in terms of the uptake of $CO_2$ under natural field conditions.

Analysis of the Relationship between CO2 Emissions, OCO-2 XCO2 and SIF in the Korean Peninsula (한반도 지역에서 CO2 배출량과 OCO-2 XCO2 및 SIF의 관계성 분석)

  • Yeji Hwang;Jaemin Kim;Yun Gon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.169-181
    • /
    • 2023
  • Recently, in order to reduce carbon dioxide (CO2) emissions, which is the main cause of global warming, Korea has declared carbon emission reduction targets and carbon neutral. Accurate assessment of regional emissions and atmospheric CO2 concentrations is becoming important as a result. In this study, we identified the spatiotemporal differences between satellite-based atmospheric CO2 concentration and CO2 emissions for the Korean Peninsula region using column-averaged CO2 dry-air mole fraction from the Orbiting Carbon Observatory-2 and emission inventory. And we explained these differences using solar-induced fluorescence (SIF), a photosynthetic reaction index according to vegetation growth. The Greenhouse Gas Inventory and Research Center (GIR) and Emissions Database for Global Atmospheric Research (EDGAR) emissions continued to increase in Korea from 2014 to 2018, but the satellite-based atmospheric CO2 concentration decreased in 2018, respectively. Regionally, GIR and EDGAR emissions increased in 2018 in Gyeonggi-do and Chungcheongbuk-do, but satellite-based CO2 concentrations decreased for the corresponding years. In addition, the correlation analysis between emissions and satellite-based CO2 concentration showed a low correlation of 0.22 (GIR) and 0.16 (EDGAR) in Seoul and Gangwon-do. Atmospheric CO2 concentrations showed a different correlation with SIF by region. In the CO2-SIF correlation analysis for the growing season (May to September), Seoul and Gyeonggi-do showed a negative correlation coefficient of -0.26, Chungcheongbuk-do and Gangwon-do showed a positive correlation coefficient of 0.46. Therefore, it can be suggested that consideration of the CO2 absorption process is necessary for analyzing the relationship between the atmospheric CO2 concentration and emission inventory.

Effect of Overhead Flooding Stress on Photosynthesis and Growth in Rice (벼의 관수기간 및 수질이 광합성과 생육에 미치는 영향)

  • 이상각;강병화
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.209-214
    • /
    • 2001
  • Physiological responses of rice to the flooding time of different water turbidity (clear water, sub-muddy water, muddy water) were analyzed as photosynthesis, chlorophyll fluorescence, transpiration, and physiological recovery. Photosynthetic rate was higher as turbidity increased and decreased as flooding time was extended. Floodings of 36 hrs and 42 hrs were resulted in 25% and 50% decrease of photosynthetic rate, respectively. Transpiration rate was higher in high turbidity (increased 30%, 25%, and 20% in clear, sub-muddy, and muddy water, respectively) and in increased floodings. Fv/Fm decreased as increased turbidity and flooding time. About 20% decrease of Fv/Fm was recorded in 48 hrs and 36 hrs after flooding with clear water and sub-muddy water(including muddy water), respectively. Total nitrogen was decreased with flooding treatment. Significant decrease of total nitrogen was occurred 36 hrs after flooding with muddy water, Dry weight measured 2 weeks after flooding treatment as an indication of recovery of flooding stress didn't show significant difference with turbidity, but significantly decreased as flooding time was prolonged. About 25% and 50% decreases were found in 24 hrs and 42 hrs flooding time, respectively. furthermore, 48 hrs of flooding with sub-muddy and muddy water resulted in no physiological recovery. Photosynthetic rate was decreased 15% and 10% with clear water and muddy water(including sub-muddy water), respectively. The rate was dramatically decreased 42 hrs after flooding. Transpiration rate increased about 20% regardless of turbidity and flooding time. We found transitory decrease of photosynthetic and transpiration rate at the point of 24 hrs after flooding and right after do-flooding.

  • PDF

Evaluation of Photochemical Reflectance Index (PRI) Response to Soybean Drought stress under Climate Change Conditions (기후변화 조건에서 콩 한발스트레스에 대한 광화학 반사 지수 반응 평가)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyeong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.261-268
    • /
    • 2019
  • Climate change and drought stress are having profound impacts on crop growth and development by altering crop physiological processes including photosynthetic activity. But finding a rapid, efficient, and non-destructive method for estimating environmental stress responses in the leaf and canopy is still a difficult issue for remote sensing research. We compared the relationships between photochemical reflectance index(PRI) and various optical and experimental indices on soybean drought stress under climate change conditions. Canopy photosynthesis trait, biomass change, chlorophyll fluorescence(Fv/Fm), stomatal conductance showed significant correlations with midday PRI value across the drought stress period under various climate conditions. In high temperature treatment, PRI were more sensitive to enhanced drought stress, demonstrating the negative effect of the high temperature on the drought stress. But high CO2 concentration alleviated the midday depression of both photosynthesis and PRI. Although air temperature and CO2 concentration could affect PRI interpretation and assessment of canopy radiation use efficiency(RUE), PRI was significantly correlated with canopy RUE both under climate change and drought stress conditions, indicating the applicability of PRI for tracking the drought stress responses in soybean. However, it is necessary to develop an integrated model for stress diagnosis using PRI at canopy level by minimizing the influence of physical and physiological factors on PRI and incorporating the effects of other vegetation indices.

Initial Growth Responses of Four Woody Plants for Indoor Landscaping according to Irrigation Frequency (관수주기에 따른 실내녹화용 목본식물 4종의 초기 생육반응)

  • Kwon, Kei-Jung;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.1
    • /
    • pp.28-34
    • /
    • 2017
  • This study was carried out to investigate growth characteristics of woody plants that are widely used indoors in accordance with irrigation frequency and to find the optimum irrigation conditions for plants that help to improve the indoor environment. Four woody plants used in this study included Ardisia pusilla, Clusia rosea, Fatsia japonica, and Ficus elastica. They were planted in pots with a diameter of 10cm and cultivated in three different irrigation frequencies: two times per week, one time per week, and one time per two weeks. After 120 days, they were measured by plant height, fresh weight, dry weight, SPAD value, leaf color, leaf water potential, chlorophyll fluorescence (Fv/Fm), and photosynthetic rate. The average soil moisture content was $48.8{\pm}2.1%$ in two times per week, $25.2{\pm}4.4%$ in one time per week, and $10.3{\pm}2.4%$ in one time per two weeks. For A. pusilla, leaf water potential was higher, and Fv/Fm value was 0.731 in two times per week irrigation, showing more wetness. For A. pusilla, F. japonica and F. elastica photosynthetic rate was significantly lower in one time per two weeks irrigation, appearing to be more sensitive to drying than C. rosea. When irrigated one time per week, with the soil's volume average moisture content of 25%, all four woody plants used in this experiment proved to grow smooth. Thus, it was determined to be good for use in indoor landscaping.