• Title/Summary/Keyword: 염화물 함유량 시험

Search Result 12, Processing Time 0.024 seconds

The Effect of Chloride on the Corrosion of Reinforced Concrete (염화물이 철근콘크리트의 부식에 미치는 영향)

  • Kim, Jeong-Sup;Shin, Yong-Seok;Lee, Sul;Kim, Kwang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.147-154
    • /
    • 2005
  • It is found that as contents of chloride ion and age increase, area of corrosion also increases. Inare increased to 1035 days from 730 days, slope of increase of corrosion area is greatest. Non-rust inhibitor specimens show corrosion area of 8~35 times more than rust inhibitor specimens and anticorrosive effects by application of rust inhibitor can be confirmed. When chloride ion is not contained, corrosion control effects of steel reinforcing according to increase of thickness are found, but specimens having chloride ion show no regular tend of thickness and corrosion due to complex problems such as reverse diffusion of chloride and test errors.

A study on physical characteristics of cement mortar according to change of moist mud flat replacement ratio (습윤갯벌 치환율 변화에 따른 시멘트 모르타르의 물리적 특성에 관한 연구)

  • Yang, Seonghwan;Kang, Yunyoung;Lee, Heungyeol
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.348-357
    • /
    • 2017
  • In this study, we examined the physical properties of cement mortar by replacing a part of the amount of fine aggregate in moist mud flat. I analyzed the possibilities of using bricks. Flow measurement results show that the flow value increases as the mixing ratio of cement and fine aggregate increases and the flow value decreased as the replacement ratio of moist mud flats decreased. Chloride contents were also found to decrease with decreasing substitution rate of moist mud flats. As a result of the compressive strength measurement, the compressive strength increased in inverse proportion as the displacement ratio of moist mud flats decreased in most mixing ratio. As a result of tensile strength measurement, the tendency was similar to compressive strength and the intensity increased as the replacement ratio of moist mud flats decreased.

Effect of Corrosion Inhibitor for Reinforcing Steel in Concrete Containing Chlorides (염화물을 함유한 콘크리트 중의 철근방식을 위한 방청제의 효과)

  • 문한영;김성수
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.325-333
    • /
    • 1998
  • Under the seawater environment, the reinforced concrete structure is deteriorated due to physical and chemical attacks. The main deterioration mechanism is the chloride corrosion of reinforcing steel. The corrosion inhibitors have been used to protect the rebars from corrosion which are susceptible to chlorides in concrete. However, there is not clear conclusion about corrosion inhibitors yet. In this study, it is made the accelerated experiment with 3 kinds of corrosion inhibitors for various chloride ingresses. It is estimated corrosion inhibitors that inhibitors by Half-Cell Potential, corrosion area ratio and weight loss ratio. It is concluded that inhibitors are not effective to corrosion inhibition for excessive chloride ingress. However, the effect of inhibition is directly proportional ot contents of corrosion inhibitors in some chloride ingress.

Corrosion Resistance of Cr-bearing Rebar in Concrete Subjected to Carbonation and Chloride Attack (중성화와 염해의 복합 열화 환경하의 콘크리트 내에서의 Cr강방식철근의 방식성)

  • Tae, Sung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.115-122
    • /
    • 2006
  • Ten types of steel bars having different Cr contents were embedded in concretes with chloride ion contents of 0.3, 0.6, 1.2, and $2.4kg/m^3$ to fabricate specimens assuming such deteriorative environments. After being carbonated to the reinforcement level, these concretes were subjected to corrosion-accelerating cycles of heating/cooling and drying/wetting. The time-related changes in the corrosion area and corrosion loss of the Cr-bearing rebars were then measured to investigate their corrosion resistance. The results revealed that in a deteriorative environment prone to both carbonation and chloride attack, corrosion resistance was evident with a Cr content of 7% or more and 9% or more in concretes with chloride ion contents of 1.2 and $2.4kg/m^3$, respectively.

Properties of Non-Sintered Cement Pastes Immersed in Sea Waters at Different Temperatures for Binders Mixed with Different Ratios (침지된 해수 온도 및 결합재 혼합비에 따른 비소성 시멘트의 강도 특성)

  • Jun, Yubin;Kim, Tae-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.75-84
    • /
    • 2016
  • This paper presents an investigation of the mechanical properties on non-sintered cement pastes immersed in sea waters at three different temperatures. The non-sintered cement pastes were synthesized using blended binder(Class F fly ash; FA and ground granulated blast furnace slag; GGBFS) and alkali activator(sodium hydroxide and sodium silicate). Binders were prepared by mixing the FA and GGBFS in different blend weight ratios of 6:4, 7:3 and 8:2. The alkali activators were used 5wt% of blended binder, respectively. Calcium carbonate was used as an chemical additive. The compressive strength, bulk density and absorption of alkali-activated FA-GGBFS blends pastes were measured at 3 and 28 days after immersed in sea waters at three different temperatures($5^{\circ}C$, $15^{\circ}C$ and $25^{\circ}C$). The XRD and SEM tests of the pastes were conducted at 28 days. Water-soluble chloride(free chloride) and acid-soluble chloride(total chloride) contents in the pastes were also measured after 28 days immersion in sea water. The experimental results showed that increasing the content of FA in alkali-activated FA-GGBFS blends pastes immersed in sea water increases the absorption, water-soluble chloride content and acid-soluble chloride content, and reduces the compressive strength and bulk density. And it was found that there was a variation of strength change for the alkali-activated FA-GGBFS blends pastes immersed in sea waters at three different temperatures that depends on the blending ratio of FA and GGBFS.

Durability Characteristics of RC containing Different Chloride Contents based on Long Term Exposure Test and Accelerated Test (장기폭로시험과 촉진시험에 근거한 염화물 함유량에 따른 철근콘크리트의 내구특성)

  • 권성준;송하원;신수철;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.759-762
    • /
    • 1999
  • The concrete structures possessing good structural integrity can face durability problems due to deteriorations of concrete structures under various environmental conditions. The durability problems weaken the structural integrity in the long run. Especially, the excessive use of sea sand causes serious reinforcement corrosion and carbonation in concrete structures. An accelerated test is often used to predict deterioration as a qualitative measure, but without long term exposure test results or understanding of the relationship between the accelerated test and the long term exposure test, the accelerated test result alone can not be used effectively as a quantitative measure. In this paper, a methodology is proposed to predict the long term deteriorations, based on the result of the short-term accelerated test, of concrete containing different contents of chloride ions. Then, the correlation between two results on the steel corrosion ratio and the carbonation depth is analyzed for concrete with different chloride contents.

  • PDF

Evaluation of steel corrosion and Concrete Freeze-Thaw durability on the Liquid non-chloride deicer (액상 비염화물계 제설제의 강재 부식성 및 콘크리트 동결융해 내구성 평가)

  • Lee, Beung-Duk;Kim, Hyun-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.529-532
    • /
    • 2008
  • Domestic area of most be happened chloride deicer damage. Because daily mean temperature is below 0$^{\circ}C$ from the area of domestic most. Use of deicing chemicals has been and will continue to be a major part of highway snow and ice control methods. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, not only the source of substantial cost penalties due to their corrosive action and ability to deterioration roadway surface materials but also the source of environmental damages. Particularly, it has been recognized that chlorides present in deicing agents can significantly increase concrete surface scaling. In severe cases, scaling can result in dislodgement of coarse aggregate. This research estimates that pH and test of specific pollutants, dynamic modulus of elasticity for freeze-thaw test of concrete were higher than those NaCl, $CaCl_2$, and NaCl+$CaCl_2$(7:3, w/w), also weight losses for scaling test of concrete were much lower than those of NaCl, $CaCl_2$, and NaCl+$CaCl_2$(7:3, w/w).

  • PDF

Improvement of Dry-blasting Efficiency for Ballast used as Aggregate of Paved Track (포장궤도 골재용 도상자갈의 건식 블라스팅 효율 향상 연구)

  • Lee, Il-Wha
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.78-83
    • /
    • 2010
  • On the paved track, the ballast is used as aggregate for the filling layer using the pre-packed concrete technique. The most important condition of aggregate is adhesive strength with mortar. To satisfy this condition, surface of aggregate should be cleaned by water or others. In a paved-track method to be introduced domestically, an environment-friendly dry-washing technology which will replace the water-washing method has been developed. A dry-washing method was designed to blast the crushed weight material with a diameter of 0.3~0.5mm at high pressure to peel the surface of the aggregate. The study was intended to enhance the washing efficiency of dry-blasting technology and to that end, the tests including blasting material, content of fine aggregate depending on time elapsed, content of chloride, LA abrasion rate and compressive strength were conducted to recommend the efficient washing material and the process.

A Fundamental Study about the Applicability of Mud Flat as a Concrete Admixture and Filler (갯벌의 콘크리트용 혼화재 및 채움재로서의 활용가능성에 대한 기초적 연구)

  • Yang, Seong-Hwan;Kang, Yun-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.571-578
    • /
    • 2016
  • Recently, review on viability of various industrial by product and natural materials as raw material for concrete has been actively done in aspect of environment-friendly issue and depletion of natural resource. This study conducted fundamental study on the possibility of utilizing mud flat as admixture and filling material for concrete. First, chemical analysis on the viability of mud flat as admixture was done and the researchers compared it with the substance of fly ash and blast furnace slag. According to the result, substance content was proven to be inadequate. In addition, as the replacement rate of mud flat increased, compressive strength and tensile strength decreased. According to the estimated result of chemical substance analysis, possibility of utilizing mud flat as admixture was low. According to the result of experiment done as filling material, 10% ~ 30% replacement rate of mud flat manifested more than 8 Mpa of compressive strength of block which may be utilized for secondary product. However, additional experiment such as making block is required afterward. According to the result of flow experiment, as the replacement rate of mud flat increased, flow value decreased, and through chloride content analysis test, it was proven that mud flat is inappropriate to be applied as steel beam using structure since it has high content of sodium. It may be utilized as products that does not use steel beam such as internal brick.

The Characteristics of Mortar According to the Water Cement Ratio and Mudflats Replacement Ratio (물-시멘트비 및 갯벌 치환율에 따른 모르타르의 특성)

  • Yang, Seong-Hwan;Lee, Heung-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.227-234
    • /
    • 2017
  • This research analyzes the properties of mortar following the rise in water-cement ratio and applicability as an eco-friendly construction supply by using the mudflats of a dredged arena as a substitute for aggregate. The results of a experiment of the flow showed that the flow value decreases as the amount of mudflats increases. A test for chloride content showed that the chloride content increases with the amount of mudflats. In the compression of specimen mixed with mudflat and the testing of tensile strength, the strength weakened as the addition ratio of mudflats rose. However, with 14-day strength as the standard, most specimen showed more strength than the plain, and 14-day strength was higher than 28-day strength. It appears to be experimental error in the mixing process from the viscosity and cohesion of mudflats, and it is considered that there will be a need for an experiment on mixing methods of mudflats in the future. The compressive strength of this research was the strongest with 70% in water-cement ratio, and the tensile strength was strongest with 80% in water-cement ratio. In the evaluation of surface analysis, 70% water-cement ratio, which is finest in strength, mixing, and compactness, was selected to analyze the roughness of the surface, and the results showed that the surface became smoother as the addition ratio of mudflats increases. In conclusion, it appears that 70% water-cement ratio is the optimal mixing ratio for mortar and 10 to 30% addition ratio of mudflats the optimal ratio. It also appears that the application of interior finishing material like bricks and tiles and interior plastering material using the mudflats are possible.