• Title/Summary/Keyword: 염화물환경에서의 부식

Search Result 79, Processing Time 0.023 seconds

Temperature-dependent Diffusion Coefficient of Chloride Ion in UAE Concrete (UAE 콘크리트에 대한 염화물 확산의 온도의존성)

  • Ji-Won Hwang;Seung-Jun Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.48-54
    • /
    • 2024
  • NPP (Nuclear power plant) structures have been constructed near to the sea shore line for cooling water and exposed to steel corrosion due to chloride attack. Regarding NPP structures built in the UAE, chloride transport may be more rapid than those in the other regions since the temperature near to the coast is high. In this study, concrete samples with 5,000psi (35MPa) design strength grade were manufactured with the materials and mix proportions, which were the same as used in the UAE NPP structures, then chloride diffusion coefficients were evaluated considering temperature and curing age. The compressive strength and the diffusion coefficient were evaluated and analyzed for the samples with 28 and 91 curing days. In addition, chloride diffusion tests for 91-day-cured condition were carried out in the range of 20℃ to 50℃. The activation energy was obtained through converting the temperature slope to a logarithmic function and it was compared with the previous studies. The proposed activation energy can be useful for a reasonable durability design by using actual temperature-dependent chloride diffusion coefficient.

A Study on Corrosion Potential of Cracked Concrete Beam According to Corrosion Resistance Assessment (부식 저항성 평가에 따른 균열 콘크리트 보의 부식전위 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.97-105
    • /
    • 2009
  • Development and use of blended cement concrete is gaining more importance in the construction industry with reference to durability mainly due to the pore refinement and reduction in permeability. Cracks play a major role on important parameters like permeability, rate of chloride ingress, compressive strength and thus affect the reinforcement corrosion protection. Furthermore, when a crack occurs in the cover concrete, the corrosion of the steel reinforcement may be accelerated because the deterioration causing factors can pass through the crack. In recent years the effect of cracking on the penetration of concrete has been the subject of numerous investigations. Therefore assessing the service life using blended concrete becomes obviously in considering the durability. In the present study, the corrosion assessment of composite concrete beams with and without crack with of 0.3mm using OPC, 30% PFA, 60% GGBS, 10% SF was performed using half cell potential measurement, galvanic potential measurement, mass loss of steel over a period of 60days under marine environmental conditions and the results were discussed in detail.

Corrosion Resistance of Cr-bearing Rebar to Macrocell Corrosion Caused by Concrete with Crack (피복 콘크리트의 균열 발생에 기인한 매크로셀 부식 환경하에서의 Cr강방식철근의 방식성)

  • Tae, Sung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.79-86
    • /
    • 2006
  • This study was investigated to corrosion resistance of Cr-bearing rebars to macrocell corrosion caused by concrete with crack. Ten types of steel bars having different Cr contents were embedded in concretes with imitation crack. The corrosion resistance of the Cr-bearing rebar was examined by measuring half-cell potential, macrocell corrosion current, corrosion area and weight loss up to 105 cycles of salt spray testing. The results revealed that the Cr content required for corrosion resistance in a macrocell corrosion environment caused by chloride ion gap of $3kg/m^3$ was 9% or more. The corrosion-resisting performance of Cr-bearing rebar was particularly noticeable with a Cr content of 11% or more.

Relationship Analysis between Half Cell Potential and Open Circuit Potential Considering Temperature Condition (온도 영향을 고려한 RC 구조의 반 전위 및 OCP의 상관성 분석)

  • Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.124-132
    • /
    • 2022
  • The corrosion potential in concrete varies greatly with exposure and concrete mix conditions. In this study, RC (Reinforcement Concrete) samples were prepared considering cover depth, chloride concentration, and W/C(water to cement) ratio as variables, and HCP(Half Cell Potential) was measured, which evaluated comparative potential between embedded steel and concrete surface. In addition, OCP(Open Circuit Potential) was measured using buried steel and CE(Counter Electrode). Agar and NaOH solution were used as ion exchange materials and Hg/HgO was used for RE(Reference Electrode), which was more sensitive to temperature than HCP. Among the influencing factors, the exposure period and chloride concentration had a relatively greater effect than cover depth and w/c ratio. Additionally, the entire measured HCP and OCP showed a clearly linear relationship with increasing cover depth and w/c ratio. Through multiple regression analysis, the relationship between HCP and OCP was quantified, and an improved correlation was obtained with temperature effect.

A Study on the Allowable Crack Width of RC Beam with Corrosive Environment (염해환경에서의 RC보의 허용 균열폭 산정에 관한 연구)

  • Kim, Dongbaek;Kwon, Soondong;An, Kwanghee
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.253-261
    • /
    • 2015
  • Deterioration of reinforced concrete structures in corrosive environment is tend to be accelerated due to ingress of aggressive ion such as chloride ion. Chloride-induced corrosion is affected by various factors such as cover concrete qualities, width of existing cracks, and cover depth of concrete. However, the allowable crack width of RC structure in design code does not consider the concrete material properties and conditions of construction except the cover depth. In this paper, an equation for allowable crack width is proposed to consider the cover concrete quality, crack width, and cover depth. Crack width, cover depth, and water-cement ratio of concrete are selected as influencing factors on corrosion of reinforcement for rapid chloride tests. From test results, the relationships between the factors and corrosion are derived. Finally, the equation for allowable crack width is derived in terms of concrete compressive strength and cover depth. The presented equation is verified by comparative calculations with design code variables.

Evaluation of Chloride Extraction under Electrochemical Chloride Extraction (전기화학적 염화물 추출법에 따른 염소이온 제거 성능 평가)

  • Jiseok, Kim;Ki-Yong, Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.553-557
    • /
    • 2022
  • The present study evaluate the chloride extracion under electrochemical chloride extraction method. Chloride was penetrated into the concrete from external reservoir using a 4M NaCl solution, and an electrochemical chloride extraction method was applied after the curing period of 1 year. The current density was constantly kept 1000 mA/m2 for coulostatic application with the variation in potential difference. The duration of the ECE treatment was 2, 4, 8 weeks, respectively. The residual chloride concentration at all depths decreased, and the chloride concentration decreased as the application period increased. After the application period of 8 weeks, 62.9 to 77.6 % of chloride extracted in the total chloride profile, and 77.7 to 99.5 % of chloride extracted in the free chloride profile. In particular, the concentration of free chloride at a depth of 7 mm or more from the concrete surface was 0.01 % or less by cement. In addition, it was confirmed that the bound chloride could be extracted by the electrochemical chloride extraction.

Study on Characteristics and Features of Re-corrosion on Archaeological Iron Nails after Conservation Treatments (철제관정의 보존처리 후 재부식 양상 및 특성 연구)

  • Lee, Hyeyoun;Park, Hyungho;Kim, Sujung;Yu, Jaeeun
    • Journal of Conservation Science
    • /
    • v.28 no.4
    • /
    • pp.343-351
    • /
    • 2012
  • Excavated archaeological iron objects are prevented from being corroded going through desalination which slow down being corroded. However archaeological iron objects are liable to be corroded due to the high ionization tendency even though they are stored in environment restricted from corrosion factors. Iron objects could be deteriorated more than just excavated. Therefore this study investigated about the characteristic of re-corrosion and the effect on objects. In study, archaeological iron nails in storage for 4 years after conservation treatments were tested. Optical microscopy and X-ray photography for appearance, XRD, SEM-EDS, Raman spectroscopy for chemical composition, IC for chloride ions concentration inside iron nails were used. As results, iron nails carried out conservation treatments measured a high concentration of chloride ions after the long storage period. The form of objects were not in good condition such as broken or destroyed when the high chloride ions concentration was detected. In addition, the yellow and red powdery corrosion product were detected on the boundary between corrosion products and substrates and they were identified as akaganeite which is symptom of active corrosion.

Corrosion Behaviors of Rebar in Low Temperature Mortar with Chloride and Nitrite (염화물 및 아질산염을 사용한 저온환경하 모르타르내 철근의 부식특성)

  • Park, Jung-Hoon;Ki, Kyoung-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.218-219
    • /
    • 2017
  • In order to examine the possibility of practical at low-temperature environment curable cement mortar with chloride and nitrite as cold resistance admixture for rebar corrosion prevention. As a result, chloride was used using nitrite complex in low temperature environment and corrosion performance of rebar was improved and mortar strength was promoted. The ratio of nitrite than chloride applied more than twice, corrosion of the reinforcing bars will not occur even in low temperature environment, cement hydration reaction will be promoted and mortar will prevent freezing damage.

  • PDF

Evaluation of Chloride Diffusion Characteristics in Concrete with Fly Ash Cured for 2 Years (2년 양생된 Fly Ash 콘크리트의 염화물 확산 특성 평가)

  • Yoon, Yong-Sik;Hwang, Sang-Hyeon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.8-15
    • /
    • 2019
  • When RC(Reinforced Concrete) structures are exposed to harsh environment, deterioration phenomenon occurs, and the corrosion in rebar due to chloride intrusion is known as representative deterioration, so called chloride attack. In this paper, chloride resistance performance of 2 years aged concrete is evaluated considering 3 levels of water to binder ratio(0.37, 0.42, and 0.47) and 2 levels of substitution ratio of fly ash(0% and 30%). Accelerated chloride diffusion coefficient tests referred to Tang's method, total passed charge tests referred to ASTM C 1202, and compressive strength tests referred to KS F 2405 are performed. With adaptation of the previous test results and the results from this study, time-dependent chloride diffusion characteristics are analyzed for each concrete. The FA(Fly Ash) concrete has higher chloride resistance performance than OPC(Ordinary Portland Cement) concrete. According to the evaluation standard of ASTM C 1202, the FA concrete has "Moderate" grade after 49 days while OPC concrete does "Moderate" grade after 365 days. As the results of time-parameter for chloride diffusion, OPC concrete and FA concrete show the decreasing behavior of time-parameters with increasing water to binder ratio. Also, FA concrete has 1.57~2.74 times of time-parameter than OPC concrete. That's cause is thought that the time-parameter indicates the gradient of decreasing of diffusion coefficient. FA concrete has higher time-parameters than OPC concrete by pozzolanic reaction of FA.

A study on the Application Effect of Friction Stir Processing for Enhanced Pitting Corrosion Resistance of Stainless Steel Welds in Chloride Environment (염화물 환경에서 스테인리스강 용접부의 공식저항성 향상을 위한 마찰교반공정 적용효과에 관한 연구)

  • Jong Moon Ha;Deog Nam Shim;Seung Hyun Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.84-92
    • /
    • 2023
  • As temporary storage facilities for spent nuclear fuels in domestic nuclear power plants are expected to be saturated, external intermediate storage facilities would be required in the future. Spent nuclear fuels are stored in metal canisters and then placed in a dry environment within concrete or metal casing for operation. In the United States, the dry storage method for spent nuclear fuels has been operated for an extended period. Based on the corrosion experiences of dry storage canisters in chloride environments, numerous studies have been conducted to reduce corrosion in welds. With the construction of intermediate storage facilities in Korea for spent nuclear fuels expected near coastal areas adjacent to nuclear power plants, there is a need for research on the corrosion occurrence of welds and mitigation methods for canisters in chloride environments. In this paper, we measured and compared the residual stresses in the Heat-Affected Zones (HAZ) after electron beam welding (EBW) and gas tungsten arc welding (GTAW) processes for candidate materials such as 304L, 316L, and duplex stainless steel(DSS). We investigated the possibility of microstructure control through the application of surface modification processes using friction stir processing (FSP). Corrosion tests on each welded specimen revealed a higher corrosion rate in EBW welds compared to GTAW. Furthermore, it was confirmed that corrosion resistance improved due to phase refinement and redistribution of precipitates when FSP was applied.