• Title/Summary/Keyword: 염제거율

Search Result 177, Processing Time 0.025 seconds

Removal of Phosphate in Solution through the Utilization of Gibbsite (Gibbsite에 의한 용액 중의 인산염제거)

  • 현재혁;남인영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.97-100
    • /
    • 1997
  • 본 연구에서는 알루미늄 제작 공정에서 폐기물로 발생하는 gibbsite를 이용하여 용액 내에 존재하는 인산염을 제거하였다. 실험을 수행함에 있어 용액의 pH를 3, 7, 10으로 변화시켜 보았고 인산염 제거에 미치는 여러 인자들 중에서 P : Al 의 비율이 미치는 영향을 살펴보고자 인산염의 농도를 100, 200, 500, 800, 1000 mg/l 로 변화시켰으며, gibbsite 의 양을 2, 4, 8, 10 g 으로 변화시켜 실험하였다. 이러한 실험 결과로부터 72 hr 이후에 용액 내의 인산염 농도가 일정하게 유지된다는 것을 알 수 있있다. 인산염의 제거율은 pH가 낮을수록 높아졌다. 또한 인산염의 초기농도가 낮을수록 제거율이 높아졌으며, 투여된 gibbsite 의 양이 많을수록 제거율이 높아지는 것으로 나타났다.

  • PDF

A Comparative Study on the Use of Seawater and Sea Salt in Nutrient Elimination (영양염제거에서 해수 및 해수염에 관한 비교연구)

  • Cainglet, Annaliza Pabrua;Kim, Woo-Hang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.829-835
    • /
    • 2016
  • An excess in the nutrients such as nitrogen and phosphate leads to a phenomenon called eutrophication. In order to avoid this, numerous methods have been used to remove excess nutrients in the water. In this study, the use of a chemical method was assessed through the formation of magnesium ammonium phosphate. The difference in the removal efficiency of seawater and sea salt solution as primary sources of $Mg^{2+}$ ions and $Ca^{2+}$ ions for the formation of magnesium ammonium phosphate (MAP) and hydroxyapatite (HAP) respectively, were observed, taking into account the changes in pH and concentration. The results showed that seawater removed about 90 % phosphate and less than 50 % ammonia in sewage water condition, whereas the sea salt solution removed almost 90 % phosphate and 70 % ammonia in solution at pH 9 and 10 mM concentration of sea salt which further increases as the optimum ${Mg/PO_4}^{3-}$, ${NH_4}^+$ ratio reaches 2. The difference in the removal efficiency of seawater and sea salt was due to the fact that the set-ups were prepared in different conditions. This study suggests that both seawater and sea salt can be used to remove nutrients from the water. The relatively higher removal of phosphate can be explained by the formation of HAP from free $Ca^{2+}$ ions initially present in seawater and sea salt solution.

Preparation of Storage-Stable Liquid Dyes by Membrane Separation Technology (막분리 기술을 위한 액체염료 제조에 관한 연구)

  • Cho, Jung Hee;Lee, Chung Hak
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.349-359
    • /
    • 1992
  • Studies were carried out on the selective removal of inorganic salts such as NaCl and $Na_2SO_4$ from dye solution, using counter diffusion-reverse osmosis and nanofiltration, respectivey. For the dye solution used in the experiments, 1 to 30% of salts were removed by counter diffusion while the loss of dye molecules was less than 0.3%. The separation factors by one pass operation were 10-500 according to ionic species. In five successive operations, removals of anion($Cl^-$) increased but those of cation($Na^+$) decreased due to the Donnan effect. Effects of feed flow rate on removal efficiencies of various ions were also observed at constant flow rate of stripping water. Reverse osmosis of desalted dye solution by counter diffusion was conducted to prepare highly concentrated liquid dyes. The rejection efficiency of dye molecules was greater than 99%. For the rejection efficiency of chloride ion, experimental values were compared with theoretical ones based on solution-diffusion model. Two stage diafiltration was performed in nanofiltration. The rejection efficiency of chloride ion was continuously decreased due to the Donnan dialysis and even negative rejection was observed. The Donnan effect was more pronounced in the second diafiltration.

  • PDF

Fundamental Studies on the Calcium Precipitation for the Reuse of Wastewater Containing Phosphate (칼슘 침전처리에 의한 인산폐수 재사용에 관한 연구)

  • Kim Yaung-Im;Kim Dong-Su
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.38-43
    • /
    • 2003
  • Phosphate is an essential material for the growth of organisms. However. since relatively small amount is required. a large amount of phosphate is abandoned in wastes and wastewater. which contaminate the ecological environment including aquatic system. Purpose of this study is to treat especially high concentrated phosphate wastewater by use of calcium precipitation method. The pH range considered was from 6 to 12 and the maximum removal of phosphate was attained at pH 12. The con-centration of phosphate was observed to decrease rapidly until a half amount of calcium ion to its equivalent for the formation of calcium phosphate precipitate was added. which resulted in the decrease of the remaining concentration of phosphate down to 0.0027 mM. The effect of fluoride ion was examined and the concentration ratio between the phosphate and fluoride ion did not have any significant influence on the removal efficiency of phosphate. The effect of pH was also investigated. With the increasing of the pH in solution, the removal rate of phosphate was increased. Also it was investigated that the effect of fluoride on the phosphate removal was not significant.

Adsorption of Nitrate and Phosphate onto the Dredged Sediment from a Coastal Fishery (연안어장 준설퇴적물에 대한 질산염과 인산염의 흡착)

  • Sun, Young-Chul;Kim, Myoung-Jin;Song, Young-Chae
    • Journal of Navigation and Port Research
    • /
    • v.36 no.6
    • /
    • pp.459-463
    • /
    • 2012
  • In the present study, experiments have been performed to investigate the effects of the type of adsorbent, pH, and ionic strength on the adsorption of nutrients (nitrate and phosphate in artificial solution) onto the dredged sediment from a coastal fishery. In addition, this study aims to evaluate the possibility of removing the nutrients from the water using the dredged sediment. In the adsorption experiments of the nutrients, the reactions were completed within 10 minutes using ${NO_3}^-$-N($100{\mu}M$, 10mM) and ${PO_4}^{3-}$-P($100{\mu}M$, 10mM). In the steady state, 61% and 77% of the initial amounts were removed respectively for $100{\mu}M$ ${NO_3}^-$-N and $100{\mu}M$ ${PO_4}^{3-}$-P. The thermal treatment of the dredged sediment at $900^{\circ}C$ was not helpful to increase the removal efficiencies of the nutrients. Additives such as CaO and MgO dropped the removal efficiency of ${NO_3}^-$ to 0%, but increased that of ${PO_4}^{3-}$ up to 98%. Adsorption isotherms of ${NO_3}^-$ and ${PO_4}^{3-}$ could be explained by the Freundlich equation ($R^2$>0.99). The adsorption reaction was little influenced by the pH and ionic strength. Based on the results showing short reaction time and considerably high removal efficiencies of the nutrients, it is proposed to apply the dredged sediment from a coastal fishery to removing nutrients such as nitrate and phosphate in the water.

Study of the Formation of Eutectic Melt of Uranium and Thermal Analysis for the Salt Distillation of Uranium Deposits (우라늄 전착물의 염증류에 대한 우라늄 공정(共晶) 형성 및 열해석 연구)

  • Park, Sung-Bin;Cho, Dong-Wook;Hwang, Sung-Chan;Kang, Young-Ho;Park, Ki-Min;Jun, Wan-Gi;Kim, Jeong-Guk;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • Uranium deposits from an electrorefining process contain about 30% salt. In order to recover pure uranium and transform it into an ingot, the salts have to be removed from the uranium deposits. Major process variables for the salt distillation process of the uranium deposits are hold temperature and vacuum pressure. Effects of the variables on the salt removal efficiency were studied in the previous study[1]. By applying the Hertz-Langmuir relation to the salt evaporation of the uranium deposits, the evaporation coefficients were obtained at the various conditions. The operational conditions for achieving above 99% salt removal were deduced. The salt distilled uranium deposits tend to form the eutectic melt with iron, nickel, chromium for structural material of salt evaporator. In this study, we investigated the hold temperature limitation in order to prevent the formation of the eutetic melt between urnaium and other metals. The reactions between the uranium metal and stainless steel were tested at various conditions. And for enhancing the evaporation rate of the salt and the efficient recovery of the distilled salt, the thermal analysis of the salt distiller was conducted by using commercial CFX software. From the thermal analysis, the effect of Ar gas flow on the evaporation of the salt was studied.

Application of Gsahydrate Formation Principle for Desalination (염분 제거를 위한 가스하이드레이트 형성 원리의 적용)

  • Kang, Min-Su;Lee, Ju-Dong;Kim, Yang-Do;Kang, Kyung-Chan;Park, Kyeong-Nam;Ryu, Young-Bok;Lee, Man-Sig
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.682-684
    • /
    • 2009
  • 본 논문에서는 해수 중에 존재하는 염분을 제거하기 위하여 가스하이드레이트 형성 원리를 이용하였다. 하이드레이트 형성을 위한 guest molecule는 이산화탄소를 사용하였으며, host moelcule로는 3.5% NaCl 물을 사용하였다. 염수에 강한 반응기를 만들기 위하여 스테인레스 강에 epoxy 수지를 코팅하여 실험을 수행하였다. 실험한 결과 70% 이상의 염제거율을 얻을 수 있었으며, 2단 공정이나 3단 공정을 적용할 경우 더욱 높은 염제거율을 얻을 수 있을 것이라고 판단된다.

  • PDF

Immobilization of Cd Contaminated Soil Using Phosphate (액상인산염을 이용한 카드뮴 오염토양의 고정화)

  • Lee, Eui-Sang;Lee, Kyoung-Chan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.321-323
    • /
    • 2006
  • 카드뮴으로 오염된 용액을 대상으로 중금속을 고정화 처리하고자 액상인산염을 투입하였다. 액상인산염을 1몰 투입하였을 때, 42.5%의 고정화율을 보였고 알칼리용액의 추가 주입으로 최대 99.5%의 높은 중금속 제거율을 나타내었다.

  • PDF

Efficiency Estimation for Desalination System of Seawater Using Reverse Osmosis Membrane (역삼투압막 해수담수화 장치의 미네럴 분리 성능평가)

  • Moon, Deok-Soo;Jung, Dong-Ho;Kim, Hyeon-Ju;Shin, Phil-Kwon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.60-66
    • /
    • 2005
  • When external pressure higher than osmosis pressure is reversely derived into solution, its solvent is moved into the solution having lower concentration, which is called 'reverse osmosis'. We investigated the desalination application of deep ocean water using reverse osmosis pressure of $40-70\;kgf/cm^2$ We observed how to operational factor j like flow rate, water temperature and pressure have effect on efficiency of reverse osmosis membrane and salts rejection. Fluxes of reverse osmosis membrane are directly proportional to water temperature and pressure. However, salts rejection rates are positively correlated with pressure and inversely proportional to water temperature. Separation efficiencies of osmosis membrane for major elements such as $Mg^{2+},\;Ca^{+2},\;Na^+\;and\;K^+$ are as follows in a strong electrolysis solution like seawater; $Ca^{2+},\;Mg^{2+}>K^+>Na^+$. Rejection rates of $Mg^{2+}\;and\;Ca^{2+}$ that have high electric charges are over 99% and show positively correlation with water temperature. Rejection rates of $Na^+$ having low electric charge is observed to be 98%-99%, which rates is much lower than those of $2^+$ charged ions like $Ca^{2+}\;and\;Mg^{2+}$. Ion rejection rates of boron, B, are much low because boron is present il free state or gas phase in seawater. Boron concentration in desalination water is over criteria of Korean drinking water, 0.3 mg/L. However, we could satisfied with the criteria of drinking water under the operation condition like temperature $5^{\circ}C$ and pressure $70kgf/cm^2$, using the relationship that rejection rates of boron is proportional to pressure and is inversely proportional to water temperature

  • PDF

Phosphorous Removal from Synthetic Wastewater Using a Continuous Flow Column Packed with Waste Lime Core (부산석회 Core로 충진된 연속식 칼럼을 이용한 인공폐수 내 인제거)

  • Lee Eui-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.709-714
    • /
    • 2006
  • The propose of this study was to investigate the feasibility of using waste lime core to remove phosphorus from wastewater in continuous flow reaction. The phosphorus was found to be removed from municipal wastewater by hydroxyapatite crystallization and precipation. Waste lime core size 1, 2 showed phosphorus removal rate of about 90% during early 11 hrs of run time. In addition, breakpoint time was decreased by increased inflow rate regardless of waste lime core size.

  • PDF