• Title/Summary/Keyword: 염스트레스

Search Result 187, Processing Time 0.024 seconds

Pseudomonas sp. G19 Alleviates Salt Stress and Promotes Growth of Chinese Cabbage (Pseudomonas sp. G19에 의한 배추의 염 스트레스 경감 및 생장 촉진)

  • Lee, Gun Woong;Lee, Kui-Jae;Chae, Jong-Chan
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.368-371
    • /
    • 2014
  • A variety of abiotic stresses limit plant growth and crop productivity. Among the abiotic stress, salinity is one of the major harmful stresses to plants. Plant growth-promoting bacterium was isolated from reclaimed land soil of Kyehwa-do and identified as Pseudomonas. Pseudomonas sp. strain G19 produced $7.5{\mu}g/ml$ of indole acetic acid and solubilized 25% of insoluble phosphate after 36 h cultivation. Also, G19 was able to produce a protein that was structurally homologous to 1-aminocyclopropane-1-carboxylate deaminase of Pseudomonas fluorescens KACC10070 playing a role in reduction of ethylene in plant. The strain G19 increased the biomass of Chinese cabbage seedlings grown in the presence of 150 mM NaCl. The results indicated that the strain G19 promoted the growth of Chinese cabbage seedling under salinity stress through microbe-plant interactions.

Effects of Sea Salt on Plant Growth and Moisture: A Case Study on Sweet Basil (Ocimum basilicum L.) (천일염이 식물 성장 및 수분도에 미치는 영향: 스위트 바질(Ocimum basilicum)에 대한 사례 연구)

  • Jung-Suk, Park
    • Journal of Industrial Convergence
    • /
    • v.20 no.11
    • /
    • pp.35-39
    • /
    • 2022
  • The purpose of this study was to investigate the effect of sea salt on the growth and moisture content of sweet basil, soil moisture content, and salt stress. As a research method, sweet basil was treated with sea salt at 0, 5, 50, 100, and 200 mM concentration of sea salt was investigated to determine the growth and stress time of sweet basil. As a result of the study, it was confirmed that the leaf width increased by 11% when treated with 5 mM, 49% when treated with 50 mM, and 44% when treated with 100 mM. Leaf length was confirmed to grow by 16% at 5 mM, 59% at 50 mM, and 82% at 100 mM treatment. As a future study, based on the effect of sea salt on the leaf and length growth of sweet basil by concentration, it was considered that more research is needed on the beneficial effects of sea salt on edible, medicinal, and aromatic plants. In addition, although salt has only been studied on stress in crops, we intend to contribute to providing basic data for research on ingredients more beneficial to the environment by finding various edible, medicinal, and aromatic plants using the sun-dried salt used in this study.

Changes of Growth and Antioxidative Enzyme(SOD, APX, GR) Activities of Spinach Beet(Beta vulgaris var. cicla) Under Saline Condition (염 환경하에서 근대(Beta vulgaris var. cicla)의 생장과 항산화효소(SOD, APX, GR)의 활성변화)

  • 배정진;추연식;송승달
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.658-667
    • /
    • 2003
  • Antioxidative enzymes (superoxide dismutase; SOD, ascorbate peroxidase; APX, glutathione reductase; GR) play major roles in scavenging mechanism of reactive oxygen species which were involved in various stress conditions including salt. In order to investigate the relation between their growth responses (dry weight) and the changes of antioxidative enzymes activity, salt-tolerant spinach beet having 15cm of shoot length were treated with various salt levels (0, 50, 200, 1000 mM NaCl) for 24 hours. Spinach beet exhibited an increase in the activity of antioxidative enzymes by salt, the maximal activity at 200 mM NaCl and the lowest activity at 50 mM NaCl in 2 hrs. after treatments. As a result of PAGE, it has been confirmed that spinach beet contained 3 isoforms (Fe-SOD, CuZn-SOD and Mn-SOD) of SOD and main isoform was CuZn- SOD form. In case of APX, isoforms of the low molecular weight(No. 7, 8) were showed strong expression especially at 200 and 400 mM NaCl treatment. Meanwhile, GR did not show specific pattern of isoforms among the salt treatments. Especially, in case of 50 mM treatment, plant showed the lowest activity of SOD with the best growth, a low enzyme activity was induced by inactivation of the Mn-SOD. Therefore, we suggested that the decrease of SOD activity at a low salt level (50 mM NaCl) or the increase of enzyme activity at a high salt level (200 mM NaCl) may be related to expression of the Mn-SOD isoform. These antioxidative enzymes showed the increase of activity in a short time by salt addition. So, it is considered that spinach beet copes effectively with a stressful condition such as salt by operating effective antioxidative defense mechanism rapidly under high salt level.

The Responses of Antioxidative Enzymes and Salt Tolerance of Atriplex gmelini (Atriplex gmelini(가는갯능쟁이)의 내염성과 항산화 효소 반응)

  • 배정진;윤호성;추연식;송승달
    • The Korean Journal of Ecology
    • /
    • v.26 no.5
    • /
    • pp.273-280
    • /
    • 2003
  • Saline conditions invoke oxidative stress attributed to the overproduction of reactive oxygen species (ROS). Changes in quantum efficiency and antioxidative enzyme activity upon salt treatment were examined in a salt-tolerant plant, Atriplex gmelini, to test the hypothesis that salt tolerance of A. gmelini is due to the increased activity of antioxidative enzymes. A. gmelini showed optimum growth at 100 mM NaCl producing 116% of the shoot dry weight over control plants in 0 mM NaCl treatment. Healthy growth persisted up to 300 mM NaCl treatment maintaining normal internal water content and dry weight. No photochemical stress or damages on antioxidative defense system was obvious in plants of 2 and 4 day salt treatment which was indicated by increased quantum efficiency (Fv/Fm value), decreased stress index (Fo/Fm value), and increased activity of antioxidative enzymes such as SOD, APX, GR. However, the plants treated with 400 mM NaCl showed decrease in growth and in antioxidative enzyme activity although the enzyme activity was still higher than that of the 0 mM NaCl treated plants (l31%, 114%, and 134% of the SOD, APX, and GR activity, respectively). Interestingly, another important antioridative enzyme that scavenges H₂O₂ in plant cells, CAT, showed rapid decrease in its activity as salt concentration increased; 38%, 22%, 15% of the 0 mM NaCl treated plants at 200, 300, 400 mM NaCl treatments, respectively. It appears that the enzymes in ascorbate-glutathione cycle such as APX and GR play the major roles in scavenging ROS produced by salt stress in A. gmelini. After 6 days of salt treatment, the damage in photochemical and antioxidative defense system was indicated by decreased Fv/Fm value and increased Fo/Fm value. A. gmelini appears to cope with short term salt treatment by enhanced activity of the antioxidative defense system, whereas long term stress invoke oxidative stress by increased ROS due to the damages in photochemical and antioxidative system.

Effects of Salt Stress on Protein Content, ATPase and Peroxidase Activities in Tobacco. (염스트레스가 담배식물의 Protein, ATPase 및 Peroxidase 활성에 미치는 영향)

  • Lee, Sang-Gak;Kang, Byeung-Hoa;Lee, Hak-Su;Bae, Gill-Kwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.296-300
    • /
    • 1998
  • The analysis of biochemical changes in tobacco plant as increase of NaCl concentraion was conducted. Total protein content and soluble protein content were decreased as NaCl concentration was increased, in that steady decreased until 120mM NaCl and largely decreased at 150mM NaCl. The expression of 74Kd subunit was increased until 60mM NaCl. However, the amount of 74Kd protein was decreased from 90mM NaCl. There was no difference for expression of other protein subunits. Chlorophyll a content was significantly decrease as NaCl concentration was increased, but chlorophyll b content was not much decreased. The slow increase up to 120mM NaCl and large increase at 150mM NaCl for ATPase and peroxidase activities indicated that 120mM NaCl could be a limiting concentration for salt injury.

  • PDF

Effect of Jang-Gu Program and Self-help Management Program on Depression, Stress, Pain and Body Discomfort in Women with Osteoarthritis (장구치기와 관절염 자조관리교육이 골관절염 여성 환자의 우울, 스트레스, 통증, 신체불편감에 미치는 효과)

  • Jeong, Yeong-Hee;Kim, Jong-Im;Kim, Sun-Ae;Lim, Keum-Ok
    • Journal of muscle and joint health
    • /
    • v.17 no.2
    • /
    • pp.212-221
    • /
    • 2010
  • Purpose: The purpose of this study was to determine the effects of music therapy (Jang-Gu) on depression, stress, pain and body discomfort in women with osteoarthritis. Methods: The study is designed using one group pretest-posttest experimental design. 31 arthritis patients, the subjects of the group participated in the music therapy program. The program was provided for 12 weeks (two times per week). The questionnaires were used to measure the outcome variables before and after the program. Data were analyzed with the SPSS 17.0 using descriptive statistics, paired t-test. Results: Depression, Stress, Pain did not decrease. But body discomfort decreased (p=0.001). Conclusion: Therefore this program was effective in body discomfort and can be a community based self-help management program for arthritis patient.

Transcriptomic Analysis of Triticum aestivum under Salt Stress Reveals Change of Gene Expression (RNA sequencing을 이용한 염 스트레스 처리 밀(Triticum aestivum)의 유전자 발현 차이 확인 및 후보 유전자 선발)

  • Jeon, Donghyun;Lim, Yoonho;Kang, Yuna;Park, Chulsoo;Lee, Donghoon;Park, Junchan;Choi, Uchan;Kim, Kyeonghoon;Kim, Changsoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.41-52
    • /
    • 2022
  • As a cultivar of Korean wheat, 'Keumgang' wheat variety has a fast growth period and can be grown stably. Hexaploid wheat (Triticum aestivum) has moderately high salt tolerance compared to tetraploid wheat (Triticum turgidum L.). However, the molecular mechanisms related to salt tolerance of hexaploid wheat have not been elucidated yet. In this study, the candidate genes related to salt tolerance were identified by investigating the genes that are differently expressed in Keumgang variety and examining salt tolerant mutation '2020-s1340.'. A total of 85,771,537 reads were obtained after quality filtering using NextSeq 500 Illumina sequencing technology. A total of 23,634,438 reads were aligned with the NCBI Campala Lr22a pseudomolecule v5 reference genome (Triticum aestivum). A total of 282 differentially expressed genes (DEGs) were identified in the two Triticum aestivum materials. These DEGs have functions, including salt tolerance related traits such as 'wall-associated receptor kinase-like 8', 'cytochrome P450', '6-phosphofructokinase 2'. In addition, the identified DEGs were classified into three categories, including biological process, molecular function, cellular component using gene ontology analysis. These DEGs were enriched significantly for terms such as the 'copper ion transport', 'oxidation-reduction process', 'alternative oxidase activity'. These results, which were obtained using RNA-seq analysis, will improve our understanding of salt tolerance of wheat. Moreover, this study will be a useful resource for breeding wheat varieties with improved salt tolerance using molecular breeding technology.

당뇨병과 감염-당뇨병으로 발생하는 외이도염

  • Yun, Hui-Jeong
    • The Monthly Diabetes
    • /
    • s.199
    • /
    • pp.26-31
    • /
    • 2006
  • 외이도염을 악화시키거나 주위로 파급시킬 수 있는 요인으로는 습기가 많은 환경, 땀을 많이 흘리는 경우, 고온, 피부의 잦은손상, 알레르기, 스트레스, 외상, 세균오염, 피부의 지방제거, 피부의 알칼리성화 등이 있으므로 이러한 원인이 생기지 않도록 주의해야 한다.

  • PDF