• Title/Summary/Keyword: 염소 이온 침투

Search Result 199, Processing Time 0.027 seconds

Resistance against Chloride Ion and Sulfate Attack of Cementless Concrete (무시멘트 콘크리트의 염소이온 침투 및 황산염 침투 저항성)

  • Lee, Hyun-Jin;Bae, Su-Ho;Kwon, Soon-Oh;Lee, Kwang-Myong;Jeon, Jun-Tai
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.63-69
    • /
    • 2015
  • It has been well known that concrete structures exposed to chloride and sulfate attack environments lead to significant deterioration in their durability due to chloride ion and sulfate ion attack. The purpose of this experimental research is to evaluate the resistance against chloride ion and sulfate attack of the cementless concrete replacing the cement with ground granulated blast furnace slag. For this purpose, the cementless concrete specimens were made for water-binder ratios of 40%, 45%, and 50%, respectively and then this specimens were cured in the water of $20{\pm}3^{\circ}C$ and immersed in fresh water, 10% sodium sulfate solution for 28 and 91 days, respectively. To evaluate the resistance to chloride ion and sulfate attack for the cementless concrete specimens, the diffusion coefficient for chloride ion and compressive strength ratio, mass change ratio, and length change ratio were measured according to the NT BUILD 492 and JSTM C 7401, respectively. It was observed from the test results that the resistance against chloride ion and sulfate attack of the cemetntless concrete were comparatively largely increased than those of OPC concrete with decreasing water-binder ratio.

Field Application of the Corrosion Protection Method for Marine Concrete with Nano-Silica (Nano-Sillica를 이용한 해양콘크리트 방식공법 현장 적용)

  • Kim, Kyoung-Min;Ryu, Dong-Woo;Park, Sang-Joon;Kim, Jong-Baek;Jo, Sung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.399-400
    • /
    • 2009
  • This study arranged the result corrosion inhibition using Nano-silica for efficient prevention to diffusion of chloride ion. For the results, significant difference was not found on slump and air content, and there were superior effect to preventing diffusion of chloride ion on hardened concrete. It seemed to be Nano-silica prevented diffusion of chloride ion.

  • PDF

Time Dependent Chloride Transport Evaluation of Concrete Structures Exposed to Marine Environment (해안 환경 하에 있는 콘크리트 구조물의 시간의존적 염화물침투 평가)

  • Song, Ha-Won;Pack, Seung-Woo;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.585-593
    • /
    • 2007
  • This paper presents a model for durability evaluation of concrete structures exposed to marine environment, considering mainly a build-up of surface chloride $(C_s)$ as well as diffusion coefficient (D) and chloride threshold level $(C_{lim})$. In this study, time dependency of $C_s$ and D were extensively studied for more accurate evaluation of service life of concrete structures. An analytical solution to the Fick's second law was presented for prediction of chloride ingress for time varying $C_s$. For the time varying $C_s$, a refined model using a logarithm function for time dependent $C_s$ was proposed by the regression analysis, and averaging integrated values of the D with time over exposed duration were calculated and then used for prediction of the chloride ingress to consider time dependency of D. Durability design was also carried out for railway concrete structures exposed to marine environment to ensure 100 years of service life by using the proposed models along with the standard specification on durability in Korea. The proposed model was verified by the so-called performance-based durability design, which is widely used in Europe. Results show that the standard specification underestimates durability performances of concrete structures exposed to marine environment, so the cover depth design using current durability evaluation in the standard specifications is very much conservative. Therefore, it is found that utilizing proposed models considering time dependent characteristics of $C_s$ and D can evaluate service lift of concrete structures in marine environment more accurately.

Study on the Critical Threshold Chloride Content for Steel Corrosion in Concrete with Various Cement Contents (단위시멘트량이 다른 콘크리트 중에서의 철근부식 임계염화물량에 관한 연구)

  • Yang, Seung-Kyu;Kim, Dong-Suck;Um, Tai-Sun;Lee, Jong-Ryul;Kono, Katsuya
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.415-421
    • /
    • 2008
  • Reinforced concrete starts to corrode when the chloride ion concentration which is the sum of included in concrete and penetrated from environments exceeds a certain level of critical chloride concentration. Therefore each country regulates the upper bounds of chloride amount in concrete and the regulations are different for each country due to its circumstances. In this study, the critical threshold chloride content according to unit cement amount is empirically calculated to propose a reasonable regulation method on the chloride amount. As a result, the critical threshold chloride content increases considerably according to cement content and it agrees with the established theories. The present regulations on total chloride amount 0.3 or 0.6 kg chloride ions per $1\;m^3$ of concrete does not reflect the influences of mix design, environmental conditions and etc. So it can be said that it is more reasonable to regulate the critical threshold chloride content by the ratio of chloride amount per unit cement content than by the total chloride content in $1\;m^3$ of concrete.

Assessment of Recovery of Chloride Penetration Resistance of Self-healing Cement Mortars Containing Layered Double Hydroxide (이중층수산화물을 혼입한 자기치유 시멘트 모르타르의 염화물 침투 저항성 회복 평가)

  • Kyung Suk, Yoo;Seung Yup, Jang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.600-608
    • /
    • 2022
  • This study investigates the effect of layered double hydroxide (LDH) on the healing performance of self-healing concrete by assessing the chloride penetration resistance of self-healing cement mortars using electrical chloride ion migration-diffusion test. Test results show that both mortars containing healing materials only and mortars containing healing materials and Ca-Al LDH together mostly had higher migration-diffusion coefficients right after cracking, but the migration-diffusion coefficients decreased more than that of OPC with increasing healing ages, and thus, they yielded higher healing capacities than OPC. Also, mortars containing Ca-Al LDH together with healing materials showed higher reduction of their migration-diffusion coefficients, and thus, higher healing capacities than mortars containing healing materials only. This suggests that as the self-healing product increases on the crack surface, the binding of chloride ions by LDH inside the crack increases.

Experimental Study on the Time-dependent Property of Chloride Diffusivity of Concrete (콘크리트의 염소이온 확산계수의 시간의존성에 대한 실험적 고찰)

  • Choi, Doo Sun;Choi, Jae Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.365-371
    • /
    • 2009
  • It is time-consuming to estimate chloride diffusivity of concrete by concentration difference test. For the reason chloride diffusivity of concrete is mainly tested by electrically accelerated method, which is accelerating the movement of chloride ion by potential difference. In this study, portland cement concrete and concrete containing with ground granulated blast-furnace slag (40 and 60% of cement by weight) with water-cementitious material ratio 40, 45, 50 and 60% were manufactured. To compare with chloride diffusivity calculated from the electrically accelerated test and immersed test in artifical seawater, chloride diffusivity tests were conducted. From the results of regression analysis, regression equation between accelerated chloride diffusivity and immersed chloride diffusivity was linear function. And the determinant coefficient was 0.96 for linear equation.

Evaluation of Chloride Attack Resistibility of Heavyweight Concrete Using Copper Slag and Magnetite as Aggregate (동슬래그 및 자철석을 골재로 사용한 중량 콘크리트의 회파블록 적용을 위한 염해저항성 평가)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.483-492
    • /
    • 2017
  • Recently, the coastal area has become the popular place for infrastructure development. To provide a beautiful scenary of costal area to nearby facilities without any hinderance, and also to protect those facilities from the sea water overflow, it is necessary to develop a new type of wave dissipating block, which is a turning wave block. It is noticeable that the top of the turning wave block is flat and thus can provide spaces for various purposes. However, the unit weight of the block decreases due to the presence of pipeline that is installed for turning the direction of the waves. In order to mitigate such problem, a heavyweight concrete needs to be used to increase the resistance against tidal waves. The copper slag and magnetite were used as a source of fine and coarse aggregate, respectively. The 28 day compressive strength of concrete incorporating ordinary and heavyweight aggregate did not show significant differences. It should be noted that the chloride ion penetration resistance was evaluated using NT-BUILD 492 rather than ASTM C 1202 method because concrete incorporating magnetite as a coarse aggregate showed excessive current flow by ASTM C 1202 method. According to the results from NT Build 492 method, which uses the penetration depth of chlorine ions to obtain chloride ion diffusivity, the heavyweight concrete incorporating the copper slag and the magnetite showed the best resistance against the chloride ion penetration. Therefore, it is reasonable to say that heavyweight concrete made with copper slag and magnetite can be used for production of turning wave block.

An Experimental Study on the Chloride Attack Resistibility of Alkali-Activated Ternary Blended Cement Concrete (알칼리 활성화 3성분계 혼합시멘트의 염해 저항성에 관한 실험적 연구)

  • Yang, Wan-Hee;Hwang, Ji-Soon;Jeon, Chan-Soo;Lee, Sea-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.321-329
    • /
    • 2016
  • The use of ternary blended cement consisting of Portland cement, granulated blast-furnace slag (GGBFS) and fly ash has been on the rise to improve marine concrete structure's resistance to chloride attack. Therefore, this study attempted to investigate changes in chloride attack resistibility of concrete through NT Build 492-based chloride migration experiments and test of concrete's ability to resist chloride ion penetration under ASTM C 1202(KS F 2271) when 1.5-2.0% of alkali-sulfate activator (modified alkali sulfate type) was added to the ternary blended cement mixtures (40% ordinary Portland cement + 40% GGBFS + 20% fly ash). Then, the results found the followings: Even though the slump for the plain concrete slightly declined depending on the use of the alkali-sulfate activator, compressive strength from day 2 to day 7 improved by 17-42%. In addition, the coefficient from non-steady-state migration experiments for the plain concrete measured at day 28 decreased by 36-56% depending on the use of alkali-sulfate. Furthermore, total charge passed according to the test for electrical indication of concrete's ability to resist chloride ion penetration decreased by 33-62% at day 7 and by 31-48% at day 28. As confirmed in previous studies, reactivity in the GGBFS and fly ash improved because of alkali activation. As a result, concrete strength increased due to reduced total porosity.

Evaluation of Chloride Ion Penetration Resistance of High Calcium Silicate Cement Concrete (High Sulfated Calcium Silicate 시멘트 콘크리트의 염소이온침투저항성 평가)

  • Jeong, Seok-Man;Yang, Wan-hee;Kim, Hyeon-Soo;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.35-43
    • /
    • 2022
  • The aim of this work was to a comparative review the performance of high calcium silicate cement (HSCSC) and that of ordinary Portland cement(OPC) and blast furnace slag cement(S/C). The result of the compressive test confirmed that the compressive strength development rate of high calcium silicate cement concrete at the age of 3 days was 73.6% that of ordinary Portland cement concrete. However, at the age of 28 days, the strength development rate of high calcium silicate cement increased to about 107.0% compared to ordinary Portland cement. In addition, the test of the chloride ion penetration resistance of concrete showed that at the age of 28 days, the passed charge decreased by 73.4% and 93.0%, respectively, in blast furnace slag cement and high calcium silicate cement compared to ordinary Portland cement, and at the age of 56 days, it decreased by 79.1% and 98.3%, exhibiting excellent resistance to chloride ion penetration. In particular, it was confirmed that the rate of decrease in the passed charge with age was higher in high calcium silicate cement than in ordinary Portland cement and blast furnace slag cement.

Characteristic on the Resistance of Chloride Infiltration in Concrete Containing Limestone Powder (석회석 미분말 혼합 콘크리트의 염소이온 침투 저항 특성)

  • 구봉근;라재웅;류택은;이재범;이현석;이기호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.75-80
    • /
    • 2002
  • This study is to investigate the characteristic on the resistance of chloride infiltration concrete containing limestone powder The variables are the substitution ratio of slag powder and limestone powder. In order to study the effect slag powder and limestone powder, all mixtures were prepared at a fixed water/cement ratio, slump, and entrained air quantity. As results show that the strength and the resistance of chloride infiltration in concrete substitution 10%, 20% limestone powder, and 30%, 40% slag powder are positive.

  • PDF